OBJECTIVE To systematically review the effectiveness of chitosan in wound healing. DATA SOURCES References were retrieved from PubMed, EMBASE, the Cochrane library, and Web of Science based on Medical Subject Headings and keywords (“chitosan” OR “chitin” OR “poliglusam” AND “wound healing”). STUDY SELECTION Eligible articles were randomized controlled trials (RCTs) that required interventions for chitosan and its derivative dressings and included endpoints associated with wound healing. In summary, five RCTs (N = 319) were included in the final analysis. DATA SYNTHESIS Only two RCTS (40%) reported significant beneficial effects of chitosan on wound healing compared with conventional gauze dressings (eg, tulle gras, petroleum jelly). The remaining three studies reported that chitosan had no significant effect on clinical wound healing compared with other biologic dressings (eg, alginate, hydrocolloid). CONCLUSIONS Although the number of trials of new chitosan dressings has been increasing, studies on the relationship between chitosan and wound healing have been limited. Current data suggest that chitosan does not slow wound healing. However, the small number of available trials restricted adequate interpretation of the existing results. Future research needs to be rigorously designed to confirm any clinically relevant effect of chitosan in wound healing.
Liver cancer is one of the most serious cancers all over the world. Liver tumor initiating cells (TICs) account for tumor initiation and metastasis. However, the regulatory mechanism of liver TICs remains unclear. Here we found long noncoding RNA SAMMSON is highly expressed in liver cancer and liver TICs. SAMMSON silenced cells show impaired self-renewal capacity, while, its overexpression induces enhanced self-renewal. SAMMSON drives the activation of Wnt/β-catenin signaling, and thus promotes liver TIC self-renewal. SAMMSON interacts with EZH2, a core component of PRC2 complex, and inhibits the expression of CTNNBIP1 through EZH2 dependent manner. SAMMSON binds to CTNNBIP1 promoter and recruits EZH2 to CTNNBIP1 promoter. What’s more, targeting liver TICs through SAMMSON, EZH2 and Wnt/β-catenin signaling impaired liver TIC self-renewal, decreased tumor propagation and severity. Taken together, SAMMSON drives liver TIC self-renewal through EZH2-dependent Wnt/β-catenin activation.
Doxorubicin (DOX) has been widely used to treat cancers as a first-line antitumor drug. However, it causes severe, irreversible, dose-dependent cardiotoxicity. To evaluate the protective effects of naringin (NRG) on cardiotoxicity, the authors investigated the molecular mechanism of the p38MAPK signaling pathway. H9c2 cells were treated for 24 h by using 5 µmol/l DOX without or with being pretreated by 1 µM NRG for 150 min or by 3 µM SB203580 for 60 min. Cell viability was detected by cell counting kit-8 assay. Intracellular reactive oxygen species (ROS) levels were detected based on the oxidative conversion of 2′,7′-dichlorfluorescein-diacetate (cell-permeable) to dichlorofluorescein (fluorescent). The expression of p38MAPK was determined by western blotting. The expression level of p-p38MAPK in H9c2 cells, which was significantly increased by exposure to 5 µM DOX for 60 min (P<0.01), was significantly decreased by pretreatment with 1 µM NRG for 150 min beforehand (P<0.01). The viability of H9c2 cells pretreated for 150 min with 1 µM NRG was significantly enhanced compared with that using DOX directly (P<0.01). Intracellular ROS levels were significantly reduced by being pretreated with 1 µM NRG for 150 min or with 3 µM SB203580 for 60 min before the cells were exposed to 5 µM DOX. Collectively, NRG protected H9c2 cells against the cardiotoxicity induced by DOX through suppressing the expression and activity of the p38MAPK pathway. The findings provided valuable evidence for the possible use of NRG to relieve DOX-induced cardiotoxicity.
This study aims to determine whether caveolin-1 (Cav-1) participates in the process of diabetic neuropathic pain by directly regulating the expression of toll-like receptor 4 (TLR4) and the subsequent phosphorylation of N-methyl-D-aspartate receptor 2B subunit (NR2B) in the spinal cord. Male Sprague-Dawley rats (120-150 g) were continuously fed with high-fat and high-sugar diet for 8 weeks, and received a single low-dose of intraperitoneal streptozocin injection in preparation for the type-II diabetes model. Then, these rats were divided into five groups according to the level of blood glucose, and the mechanical withdrawal threshold and thermal withdrawal latency values. The pain thresholds were measured at 3, 7, and 14 days after animal grouping. Then, eight rats were randomly chosen from each group and killed. Lumbar segments 4-6 of the spinal cord were removed for western blot analysis and immunofluorescence assay. Cav-1 was persistently upregulated in the spinal cord after diabetic neuropathic pain in rats. The downregulation of Cav-1 through the subcutaneous injection of Cav-1 inhibitor daidzein ameliorated the pain hypersensitivity and TLR4 expression in the spinal cord in diabetic neuropathic pain (DNP) rats.Furthermore, it was found that Cav-1 directly bound with TLR4, and the subsequent phosphorylation of NR2B in the spinal cord contributed to the modulation of DNP.These findings suggest that Cav-1 plays a vital role in DNP processing at least in part by directly regulating the expression of TLR4, and through the subsequent phosphorylation of NR2B in the spinal cord. K E Y W O R D SCav-1, diabetic neuropathic pain, NR2B, spinal cord, TLR4
The Medium‐Energy Electron Detector (MEED), a space weather monitoring instrument on the Fengyun‐3E (FY‐3E) satellite, is introduced in this paper. The MEED utilizes pin‐hole imaging technology on low‐orbit satellites for medium‐energy electron detection. Two orthogonal sensor heads enable the MEED to measure electrons from 18 directions simultaneously in the energy range of 30–600 keV (divided into eight exponentially distributed energy channels). The instrument has a ∼12° angular resolution and covers two 180° × 30° fields of view. With the magnetometer onboard the same satellite, the pitch angle distribution of medium‐energy electrons can be obtained with good angular resolution. This paper presents the design principle, ground calibration results, and preliminary on‐orbit test results of the FY‐3E MEED. The on‐orbit test results show that the medium‐energy electron fluxes, geographical distribution, energy spectrum, and pitch angle observed by the MEED are in agreement with the expected results. The MEED provides a new method to observe the low‐orbit energetic electron radiation environment from the FY‐3E satellite. Its successful in‐orbit operation will enable the theoretical study of radiation belts and improve space weather research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.