Blood glucose (BG) concentration monitoring is essential for controlling complications arising from diabetes, as well as digital management of the disease. At present, finger-prick glucometers are widely used to measure BG concentrations. In consideration of the challenges of invasive BG concentration measurements involving pain, risk of infection, expense, and inconvenience, we propose a noninvasive BG concentration detection method based on the conservation of energy metabolism. In this study, a multisensor integrated detection probe was designed and manufactured by 3D-printing technology to be worn on the wrist. Two machine-learning algorithms were also applied to establish the regression model for predicting BG concentrations. The results showed that the back-propagation neural network model produced better performance than the multivariate polynomial regression model, with a mean absolute relative difference and correlation coefficient of 5.453% and 0.936, respectively. Here, about 98.413% of the predicted values were within zone A of the Clarke error grid. The above results proved the potential of our method and device for noninvasive glucose concentration detection from the human wrist.
Sleep apnea (SA) is a common sleep disorder which could impair the human physiological system. Therefore, early diagnosis of SA is of great interest. The traditional method of diagnosing SA is an overnight polysomnography (PSG) evaluation. When PSG has limited availability, automatic SA screening with a fewer number of signals should be considered. The primary purpose of this study is to develop and evaluate a SA detection model based on electrocardiogram (ECG) and blood oxygen saturation (SpO2). We adopted a multimodal approach to fuse ECG and SpO2 signals at the feature level. Then, feature selection was conducted using the recursive feature elimination with cross-validation (RFECV) algorithm and random forest (RF) classifier used to discriminate between apnea and normal events. Experiments were conducted on the Apnea-ECG database. The introduced algorithm obtained an accuracy of 97.5%, a sensitivity of 95.9%, a specificity of 98.4% and an AUC of 0.992 in per-segment classification, and outperformed previous works. The results showed that ECG and SpO2 are complementary in detecting SA, and that the combination of ECG and SpO2 enhances the ability to diagnose SA. Therefore, the proposed method has the potential to be an alternative to conventional detection methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.