Nowadays, large volumes of multimodal data have been collected for analysis. An important type of data is trajectory data, which contains both time and space information. Trajectory analysis and clustering are essential to learn the pattern of moving objects. Computing trajectory similarity is a key aspect of trajectory analysis, but it is very time consuming. To address this issue, this paper presents an improved branch and bound strategy based on time slice segmentation, which reduces the time to obtain the similarity matrix by decreasing the number of distance calculations required to compute similarity. Then, the similarity matrix is transformed into a trajectory graph and a community detection algorithm is applied on it for clustering. Extensive experiments were done to compare the proposed algorithms with existing similarity measures and clustering algorithms. Results show that the proposed method can effectively mine the trajectory cluster information from the spatiotemporal trajectories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.