Growth differentiation factor 11 (GDF11) has been implicated in the regulation of islet development and a variety of aging conditions, but little is known about the physiological functions of GDF11 in adult pancreatic islets. Here, we showed that systematic replenishment of GDF11 not only preserved insulin secretion but also improved the survival and morphology of β-cells and improved glucose metabolism in both nongenetic and genetic mouse models of type 2 diabetes (T2D). Conversely, anti-GDF11 monoclonal antibody treatment caused β-cell failure and lethal T2D. In vitro treatment of isolated murine islets and MIN6 cells with recombinant GDF11 attenuated glucotoxicity-induced β-cell dysfunction and apoptosis. Mechanistically, the GDF11-mediated protective effects could be attributed to the activation of transforming growth factor-β/Smad2 and phosphatidylinositol-4,5-bisphosphate 3-kinase-AKT-FoxO1 signaling. These findings suggest that GDF11 repletion may improve β-cell function and mass and thus may lead to a new therapeutic approach for T2D.
Using a mouse model of multiple sclerosis (MS), experimental autoimmune encephalitis (EAE), we evaluated the role of gut microbiota in modulating chronic-progressive (CP) versus relapse-remitting (RR) forms of the disease. We hypothesized that clinical courses of EAE may be shaped by differential gut microbiota. Metagenomic sequencing of prokaryotic 16S rRNA present in feces from naïve mice and those exhibiting CP-EAE or RR-EAE revealed significantly diverse microbial populations. Microbiota composition was considerably different between naïve strains of mice, suggesting microbial components present in homeostatic conditions may prime mice for divergent courses of disease. Additionally, there were differentially abundant bacteria in CP and RR forms of EAE, indicating a potential role for gut microbiota in shaping tolerant or remittance-favoring, and pathogenic or pro-inflammatory-promoting conditions. Furthermore, immunization to induce EAE led to significant alterations in gut microbiota, some were shared between disease courses and others were course-specific, supporting a role for gut microbial composition in EAE pathogenesis. Moreover, using Linear Discriminant Analysis (LDA) coupled with effect size measurement (LEfSe) to analyze microbial content, biomarkers of each naïve and disease states were identified. Our findings demonstrate for the first time that gut microbiota may determine the susceptibility to CP or RR forms of EAE.
Purpose: Approximately 10% of patients with mismatch repair-proficient (MMRp) colorectal cancer showed clinical benefit to anti-PD-1 monotherapy (NCT01876511). We sought to identify biomarkers that delineate patients with immunoreactive colorectal cancer and to explore new combinatorial immunotherapy strategies that can impact MMRp colorectal cancer. Experimental Design: We compared the expression of 44 selected immune-related genes in the primary colon tumor of 19 patients with metastatic colorectal cancer (mCRC) who responded (n ¼ 13) versus those who did not (n ¼ 6) to anti-PD-1 therapy (NCT01876511). We define a 10 gene-based immune signature that could distinguish responder from nonresponder. Resected colon specimens (n ¼ 14) were used to validate the association of the predicted status (responder and nonresponder) with the immune-related gene expression, the phenotype, and the function of tumor-infiltrating lymphocytes freshly isolated from the same tumors. Results: Although both IL17 Low and IL17 High immunoreactive MMRp colorectal cancers are associated with intratumor correlates of adaptive immunosuppression (CD8/ IFNg and PD-L1/IDO1 colocalization), only IL17 Low MMRp tumors (3/14) have a tumor immune microenvironment (TiME) that resembles the TiME in primary colon tumors of patients with mCRC responsive to anti-PD-1 treatment. Conclusions: The detection of a preexisting antitumor immune response in MMRp colorectal cancer (immunoreactive MMRp colorectal cancer) is not sufficient to predict a clinical benefit to T-cell checkpoint inhibitors. Intratumoral IL17-mediated signaling may preclude responses to immunotherapy. Drugs targeting the IL17 signaling pathway are available in clinic, and their combination with T-cell checkpoint inhibitors could improve colorectal cancer immunotherapy. See related commentary by Willis et al., p. 5185
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.