Sphingolipids and their synthetic enzymes are emerging as important mediators in inflammatory responses and as regulators of immune cell functions. In particular, sphingosine kinase (SK) and its product sphingosine-1-phosphate (S1P) have been extensively implicated in these processes. SK catalyzes the phosphorylation of sphingosine to S1P and exists as two isoforms, SK1 and SK2. SK1 has been shown to be activated by cytokines including tumor necrosis factor-alpha (TNF-α) and interleukin1-β (IL1-β). The activation of SK1 in this pathway has been shown to be, at least in part, required for mediating TNF-α and IL1-β inflammatory responses in cells, including induction of cyclo-oxygenase 2 (COX-2). In addition to their role in inflammatory signaling, SK and S1P have also been implicated in various immune cell functions including, mast cell degranulation, migration of neutrophils, and migration and maturation of lymphocytes. The involvement of sphingolipids and sphingolipid metabolizing enzymes in inflammatory signaling and immune cell functions has implicated these mediators in numerous inflammatory disease states as well. The contribution of these mediators, specifically SK1 and S1P, to inflammation and disease are discussed in this review.
Sphingosine 1-phosphate (S1P) is an important bioactive sphingolipid metabolite that has been implicated in numerous physiological and cellular processes. Not only does S1P play a structural role in cells by defining the components of the plasma membrane, but in the last 20 years it has been implicated in various significant cell signaling pathways and physiological processes: for example, cell migration, survival and proliferation, cellular architecture, cell-cell contacts and adhesions, vascular development, atherosclerosis, acute pulmonary injury and respiratory distress, inflammation and immunity, and tumorogenesis and metastasis [1, 2]. Given the wide variety of cellular and physiological processes in which S1P is involved, it is immediately obvious why the mechanisms governing S1P synthesis and degradation, and the manner in which these processes are regulated, are necessary to understand. In gaining more knowledge about regulation of the Sphingosine Kinase (SK)/S1P pathway, many potential therapeutic targets may be revealed. This review explores the roles of the SK/S1P pathway in disease, summarizes available SK enzyme inhibitors and examines their potential as therapeutic agents.
Previously we demonstrated that the sphingolipids ceramide and sphingosine 1-phosphate (S1P) regulate phosphorylation of the ERM family of cytoskeletal proteins [1]. Herein, we show that exogenously applied or endogenously generated S1P (in a sphingosine kinase-dependent manner) result in significant increases in phosphorylation of ERM proteins as well as filopodia formation. Utilizing phosphomimetic and non-phosphorylatable ezrin mutants, we show that the S1P-induced cytoskeletal protrusions are dependent on ERM phosphorylation. Employing various pharmacological S1P receptor agonists and antagonists, along with small interfering RNA techniques and genetic knockout approaches, we identify the S1P Receptor 2 (S1P2R) as the specific and necessary receptor to induce phosphorylation of ERM proteins and subsequent filopodia formation. Taken together, the results demonstrate a novel mechanism by which S1P regulates cellular architecture that requires S1P2R and subsequent phosphorylation of ERM proteins.
Using a mouse model of multiple sclerosis (MS), experimental autoimmune encephalitis (EAE), we evaluated the role of gut microbiota in modulating chronic-progressive (CP) versus relapse-remitting (RR) forms of the disease. We hypothesized that clinical courses of EAE may be shaped by differential gut microbiota. Metagenomic sequencing of prokaryotic 16S rRNA present in feces from naïve mice and those exhibiting CP-EAE or RR-EAE revealed significantly diverse microbial populations. Microbiota composition was considerably different between naïve strains of mice, suggesting microbial components present in homeostatic conditions may prime mice for divergent courses of disease. Additionally, there were differentially abundant bacteria in CP and RR forms of EAE, indicating a potential role for gut microbiota in shaping tolerant or remittance-favoring, and pathogenic or pro-inflammatory-promoting conditions. Furthermore, immunization to induce EAE led to significant alterations in gut microbiota, some were shared between disease courses and others were course-specific, supporting a role for gut microbial composition in EAE pathogenesis. Moreover, using Linear Discriminant Analysis (LDA) coupled with effect size measurement (LEfSe) to analyze microbial content, biomarkers of each naïve and disease states were identified. Our findings demonstrate for the first time that gut microbiota may determine the susceptibility to CP or RR forms of EAE.
Ezrin, radixin, and moesin (ERM) proteins link cortical actin to the plasma membrane and coordinate cellular events that require cytoskeletal rearrangement, including cell division, migration, and invasion. While ERM proteins are involved in many important cellular events, the mechanisms regulating their function are not completely understood. Our laboratory previously identified reciprocal roles for the sphingolipids ceramide and sphingosine-1-phosphate (S1P) in the regulation of ERM proteins. We recently showed that ceramide-induced activation of PP1α leads to dephosphorylation and inactivation of ERM proteins, while S1P results in phosphorylation and activation of ERM proteins. Following these findings, we aimed to examine known inducers of the SK/S1P pathway and evaluate their ability to regulate ERM proteins. We examined EGF, a known inducer of the SK/S1P pathway, for its ability to regulate the ERM family of proteins. We found that EGF induces ERM c-terminal threonine phosphorylation via activation of the SK/S1P pathway, as this was prevented by siRNA knockdown or pharmacological inhibition of SK. Using pharmacological, as well as genetic, knockdown approaches, we determined that EGF induces ERM phosphorylation via activation of S1PR2. In addition, EGF led to cell polarization in the form of lamellipodia, and this occurred through a mechanism involving S1PR2-mediated phosphorylation of ezrin T567. EGF-induced cellular invasion was also found to be dependent on S1PR2-induced T567 ezrin phosphorylation, such that S1PR2 antagonist, JTE-013, and expression of a dominant-negative ezrin mutant prevented cellular invasion toward EGF. In this work, a novel mechanism of EGF-stimulated invasion is unveiled, whereby S1P-mediated activation of S1PR2 and phosphorylation of ezrin T567 is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.