The acoustic cavity resonance inside the tire–wheel assembly is known to contribute to audible noise in the passenger compartment of vehicles. To obtain control methods of tire acoustic cavity resonance, its characteristics and producing mechanism need to be clarified first. In this article, the finite element model of a tire coupled with acoustic medium in the tire cavity is constructed. The Euler method is introduced to study the modal characteristics of tire cavity under the influence of tire inflation pressure, load, and tire rotation velocity. Frequency splitting phenomena under four separate conditions (stationary tire without load, stationary tire with load, rotating tire without load, and rotating tire with load) are simulated and analyzed. The slope change of the resonance frequency as a function of rotation speed is found to be close to the reciprocal of tire radius which can be explained by a model of wave propagation in a ring-shaped channel with moving media inside the ring. The obtained function of the slope change can help determine the frequency variation range under different vehicle velocity, structure load, and tire inflation pressure, which can then help to control the cavity resonance energy and provide a more comfortable driving experience.
This paper describes the design, working principle, as well as calibration of an air-floating six-axis force measurement platform, where the floating plate and nozzles were connected without contact, preventing inter-dimensional coupling and increasing precision significantly. The measurement repeatability error of the force size in the platform is less than 0.2% full scale (FS), which is significantly better than the precision of 1% FS in the six-axis force sensors on the current market. We overcame the difficulties of weight loading device in high-precision calibration by proposing a self-calibration method based on the floating plate gravity and met the calibration precision requirement of 0.02% FS. This study has general implications for the development and calibration of high-precision multi-axis force sensors. In particular, the air-floating six-axis force measurement platform could be applied to the calibration of some special sensors such as flexible tactile sensors and may be used as a micro-nano mechanical assembly platform for real-time assembly force testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.