Tunable adhesion of different cell types on well-defined surfaces has attracted common interests in the field of biomaterial science and surface engineering. Herein, we demonstrate a new strategy for the regulation of cell adhesion by simply controlling the thickness of thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) brushes via surface-initiated atom transfer radical polymerization (ATRP). The adhesion of different cell types (4T1, HEK293, H9C2, HUVEC, and L929) can be easily modulated by varying the thickness of PNIPAAm brushes from 5.9 ± 1.0 nm (PN 1 ) to 69.0 ± 5.0 nm (PN 6 ). The fluorescent staining of different cell types on a variety of surfaces reveals that the thickness of PNIPAAm brushes would regulate the assembly of F-actin and the expression of vinculin and fibronectin, which are essential in regulating the adherent status of cells. Moreover, the cellular morphologies revealed that the adherent cells are well-spread, and multiple pseudopod extensions and protrusions can be observed at the margin of cells. This work provides a facile strategy for regulating tunable adhesion of different cell types, which may find applications in tissue engineering and regenerative medicine.
H9N2 subtype avian influenza virus (H9N2 AIV) is a low pathogenic virus that is widely prevalent all over the world. H9N2 AIV causes immunosuppression in the host and often leads to high rates of mortality due to secondary infection with Escherichia. Due to the drug resistance of bacteria, many antibiotics are not effective in the treatment of secondary bacterial infection. Therefore, the purpose of this study is to find effective nonantibiotic drugs for the treatment of H9N2 AIV infection-induced secondary bacterial infection and inflammation. This study proves, for the first time, that baicalin, a Chinese herbal medicine, can regulate Lactobacillus to replace Escherichia induced by H9N2 AIV, so as to resolve the intestinal flora disorder. In addition, baicalin can effectively prevent intestinal bacterial translocation of SPF chickens’ post-H9N2 AIV infection, thus inhibiting secondary bacterial infection. Furthermore, baicalin can effectively treat H9N2 AIV-induced inflammation by inhibiting intestinal structural damage, inhibiting damage to ileal mucus layer construction and tight junctions, improving antioxidant capacity, affecting blood biochemical indexes, and inhibiting the production of inflammatory cytokines. Taken together, these results provide a new theoretical basis for clinical prevention and control of H9N2 AIV infection-induced secondary bacterial infection and inflammation.
Infectious bursal disease virus (
IBDV
) caused an acute and highly contagious infectious disease, resulting in considerable economic losses in the world poultry industry. Although this disease was well-controlled under the widely use of commercial vaccines, the novel variant IBDV strain emerged due to the highly immunized-selection pressure in the field, posting new threats to poultry industry. Here, we reported the epidemic and pathogenicity of IBDV in Hubei Province from May to August 2020. We isolated 12 IBDV strains from the broiler flocks, including 9 novel variants, 2 very virulent strains and 1 medium virulent strain. Interestingly, we identified a series of changes of amino acid sites in the VP2. Further analysis indicated that the novel variant IBDV strains caused damage to bursa of fabricius and spleen, leading to immunosuppression. Our findings underscore the importance of IBDV surveillance, and provide evidence for understanding the evolution of IBDV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.