In order to collect mechanical energy from human motions on pavement without an obvious disturbance, a piezoelectric harvester for small displacement is proposed. A seesaw mechanism is utilized to transmit the pressure displacement to piezoelectric beams. Benefitting from the superiority of used axially deformed beams, the designed scheme can produce a higher voltage than the ones based on the conventional bending cantilever. Favorable electrical energy is achieved by the manufactured prototype under a displacement lower than 1 mm. Two practical applications, including charging a capacitor and powering an environmental sensing node, demonstrate the feasibility of this energy harvester in supplying power for engineering devices. The proposed device shows a favorable capacity to capture energy from humans walking on pavements. Also, this category of axially deformed beam could provide ideas for developing piezoelectric harvesters under small displacements.
The techniques that harvest mechanical energy from low-frequency, multidirectional environmental vibrations have been considered a promising strategy to implement a sustainable power source for wireless sensor networks and the Internet of Things. However, the obvious inconsistency in the output voltage and operating frequency among different directions may bring a hindrance to energy management. To address this issue, this paper reports a cam-rotor-based approach for a multidirectional piezoelectric vibration energy harvester. The cam rotor can transform vertical excitation into a reciprocating circular motion, producing a dynamic centrifugal acceleration to excite the piezoelectric beam. The same beam group is utilized when harvesting vertical and horizontal vibrations. Therefore, the proposed harvester reveals similar characterization in its resonant frequency and output voltage at different working directions. The structure design and modeling, device prototyping and experimental validation are conducted. The results show that the proposed harvester can produce a peak voltage of up to 42.4 V under a 0.2 g acceleration with a favorable power of 0.52 mW, and the resonant frequency for each operating direction is stable at around 3.7 Hz. Practical applications in lighting up LEDs and powering a WSN system demonstrate the promising potential of the proposed approach in capturing energy from ambient vibrations to construct self-powered engineering systems for structural health monitoring, environmental measuring, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.