Molecular dynamics simulations have been performed on three transmembrane cyclic peptide nanotubes, i.e., 8 × (WL)(n=3,4,5)/POPE (with uniform lengths but various radii) to investigate the radial dependences of the water-chain structures, diffusions, and transportation properties. The diffusions of individual water molecules and collective coordinates of all the channel-water in the three systems are certified as unbiased Brownian motions. From the very good linear relationships between MSDs and time intervals, the diffusion coefficients and transportation permeabilities have been deduced efficiently. Under the hydrostatic pressure differences across the membrane, a net unidirectional water flow rose up, and the osmotic permeabilities were determined. The ratios of the osmotic and diffusion permeabilities (p(f)/p(d)) were examined for all the three channels.
The novel ligand 4′-diferrocenylalkyne-2,2′:6′,2′′-terpyridine (7; Fc-CC-Fc-tpy; tpy = terpyridyl; Fc = ferrocenyl) and its Ru2+ complexes 8–10 have been synthesized and characterized by single-crystal X-ray diffraction, cyclic voltammetry, and UV–vis and luminescence spectroscopy. Electrochemical data and UV absorption and emission spectra indicate that the insertion of an ethynyl group causes delocalization of electrons in the extended π* orbitals. Cyclic voltammetric measurements of 7 show two successive reversible one-electron-oxidation processes with half-wave potentials of 0.53 and 0.78 V. The small variations of the E
1/2 values for the Fe2+/Fe3+ redox couples after the coordination of the Ru2+ ion suggest a weak interaction between the Ru2+ and Fe2+ centers. After insertion of an ethynyl group, UV–vis absorption spectra show a red shift of the absorption peak of the 1[(d(π)Fe)6] → 1[(d(π)Fe)5(π*tpy
Ru)1] MMLCT of the Ru2+ complexes. The Ru2+ complex 8 exhibits the strongest luminescence intensity (λmax
em 712 nm, Φem = 2.63 × 10–4, τ = 323 ns) relative to analogous ferrocene-based terpyridine Ru(II) complexes in H2O/CH3CN (4/1 v/v) solution.
Effects of the channel length and membrane thickness on the water permeation through the transmembrane cyclic octa-peptide nanotubes (octa-PNTs) have been studied by molecular dynamics (MD) simulations. The water osmotic permeability (p(f)) through the PNTs of k × (WL)(4)/POPE (1-palmitoyl-2-oleoyl-glycerophosphoethanolamine; k = 6, 7, 8, 9, and 10) was found to decay with the channel length (L) along the axis (~L(-2.0)). Energetic analysis showed that a series of water binding sites exist in these transmembrane PNTs, with the barriers of ~3k(B)T, which elucidates the tendency of p(f) well. Water diffusion permeability (p(d)) exhibits a relationship of ~L(-1.8), which results from the novel 1-2-1-2 structure of water chain in such confined nanolumens. In the range of simulation accuracy, the ratio (p(f)/p(d)) of the water osmotic and diffusion permeability is approximately a constant. MD simulations of water permeation through the transmembrane PNTs of 8 × (WL)(4)/octane with the different octane membrane thickness revealed that the water osmotic and diffusion permeability (p(f) and p(d)) are both independent of the octane membrane thickness, confirmed by the weak and nearly same interactions between the channel water and octane membranes with the different thickness. The results may be helpful for revealing the permeation mechanisms of biological water channels and designing artificial nanochannels.
By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 1023 W/cm2, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >1015 is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positron beam effectively decreases to ∼15° with an effective temperature of ∼674 MeV. When the laser intensity is doubled, both the positron flux (>1016) and temperature (963 MeV) increase, while the divergence angle gets smaller (∼13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.