Magnetic interaction with the gapless surface states in topological insulator (TI) has been predicted to give rise to a few exotic quantum phenomena. However, the effective magnetic doping of TI is still challenging in experiment. Using first-principles calculations, the magnetic doping properties (V, Cr, Mn and Fe) in three strong TIs (Bi2Se3, Bi2Te3 and Sb2Te3) are investigated. We find that for all three TIs the cation-site substitutional doping is most energetically favorable with anion-rich environment as the optimal growth condition. Further our results show that under the nominal doping concentration of 4%, Cr and Fe doped Bi2Se3, Bi2Te3, and Cr doped Sb2Te3 remain as insulator, while all TIs doped with V, Mn and Fe doped Sb2Te3 become metal. We also show that the magnetic interaction of Cr doped Bi2Se3 tends to be ferromagnetic, while Fe doped Bi2Se3 is likely to be antiferromagnetic. Finally, we estimate the magnetic coupling and the Curie temperature for the promising ferromagnetic insulator (Cr doped Bi2Se3) by Monte Carlo simulation. These findings may provide important guidance for the magnetism incorporation in TIs experimentally.
Based on the Monte Carlo (MC) simulation, the film growth and magnetic properties of Ni (100) films are investigated. The simulated results indicate that the surface roughness of the Ni films drops with the increase of the substrate temperature and the decrease of the deposition rate. The Curie temperature Tc is greatly influenced by the surface roughness and size of Ni films. Moreover, it is found that the Curie temperatures of the films are related to the mean coordination number Z and the surface roughness r. The simulated results explain the experimental facts well.
In this paper, we simulate the magnetization dynamic processes of the multilayer films, and calculate their hysteresis loop areas using Monte Carlo method. The simulated results indicate that, the size and anisotropy strength of the anisotropy multilayer films influence evidently the dynamic phase transition, and the phase transition temperature increases with enhancing values of the anisotropy constant and layer thickness. It is also found that, with increasing number of layers of films, the value of α decreases, while the magnitudes of β and γ increase. On the contrary, with increasing anisotropy strength, the value of α increases, while the magnitudes of β and γ reduce.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.