We present a porous ductile Mo particles reinforced Mg-based metallic glass composite, exhibiting superior mechanical performance with up to 10% compressive strain and 1100 MPa stress at room temperature. For a given amount of particles, the porous particles will generate more interfaces between the reinforcements and matrix and, thus, can confine lots of microsized compartments of the Mg based glassy phase within the porous particles. This promotes the deformation to distribute more uniformly across the specimens, improving the ductility. We suggest that porous ductile particles might preferably be used to toughen amorphous materials with stubborn brittleness.
Most plastic diffusers are either of surface-relief or particle-diffusing types, based on different principles and fabrication methods. This paper reports an innovative extrusion roller embossing process, which enables the fabrication of diffusers with both surface-relief and particle-diffusing functions. An extruder with die is employed to fabricate the thin film of PC/bead composite; the roller micro-embossing process is used to replicate the microstructure onto the surface of PC composite film. A metallic roller mold with microstructures is fabricated using turning process. During the extrusion rolling embossing process, the extruded film of PC with diffusion beads is immediately pressed against the surface of the roller mold. Under the proper processing parameters, the plastic diffusers integrating surface-relief and particle-diffusing functions have been successfully fabricated. The shape, uniformity, and optical properties of fabricated diffuser have been verified. This method shows the great potential for continuous fabrication of high-performance plastic diffusers integrating surface-relief and particle-diffusing functions with high throughput.
This paper presents a novel method to fabricate a metallic roller mold with microstructures on its surface using a dry film resist (DFR). The DFR is laminated uniformly onto the curvy surface of a copper roller. After that, the micro-scale photoresist on the surface of the roller can be patterned by non-planar lithography using a flexible film photomask, followed by ferric chloride wet etching to obtain the desired microstructures. This method overcomes the uniformity issue of photoresist coating on rollers, and solves the molds sliding problem during the embossing process because the microstructures are fabricated directly on the roller surface. Furthermore, the rigid metallic roller mold has excellent strength durability and temperature endurance, which can be used in roller hot embossing with a high embossing pressure. The fabricated microstructure roller mold is used as a mold in the hybrid extrusion roller embossing process and successfully fabricates uniform micro-scale prominent line arrays on PC films. This result proves that the roller fabricated by this method can be successfully used in roller embossing for microstructure mass production. The excellent flatness of dry film resist laminating is the key in this fabrication process. The flexible film photomask can be easily designed using CAD software; this roller fabrication method enhances the design flexibility and reduces the cost and time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.