The complex phenotypes of eukaryotic cells are controlled by decision-making circuits and signaling pathways. A key obstacle to implementing artificial connections in signaling networks has been the lack of synthetic devices for efficient sensing, processing and control of biological signals. By extending sgRNAs to include modified riboswitches that recognize specific signals, we can create CRISPR-Cas9-based 'signal conductors' that regulate transcription of endogenous genes in response to external or internal signals of interest. These devices can be used to construct all the basic types of Boolean logic gates that perform logical signal operations in mammalian cells without needing the layering of multiple genetic circuits. They can also be used to rewire cellular signaling events by constructing synthetic links that couple different signaling pathways. Moreover, this approach can be applied to redirect oncogenic signal transduction by controlling simultaneous bidirectional (ON-OFF) gene transcriptions, thus enabling reprogramming of the fate of cancer cells.
The abundant and reversible N6‐methyladenosine (m6A) R NA modification and its modulators have important roles in regulating various gene expression and biological processes. Here, we demonstrate that fat mass and obesity associated ( FTO ), as an m6A demethylase, plays a critical anti‐tumorigenic role in clear cell renal cell carcinoma (cc RCC ). FTO is suppressed in cc RCC tissue. The low expression of FTO in human cc RCC correlates with increased tumour severity and poor patient survival. The Von Hippel‐Lindau‐deficient cells expressing FTO restores mitochondrial activity, induces oxidative stress and ROS production and shows impaired tumour growth, through increasing expression of PGC ‐1α by reducing m6A levels in its mRNA transcripts. Our work demonstrates the functional importance of the m6A methylation and its modulator, and uncovers a critical FTO ‐ PGC ‐1α axis for developing effective therapeutic strategies in the treatment of cc RCC .
Background: Circular RNAs (circRNAs), a novel type of noncoding RNA (ncRNA), are covalently linked circular configurations that form via a loop structure. Accumulating evidence indicates that circRNAs are potential biomarkers and key regulators of tumor development and progression. However, the precise roles of circRNAs in renal cell carcinoma (RCC) remain unknown. Methods: Through circRNA high-throughput sequencing of RCC cell lines, we identified the circRNA TLK1 (circTLK1) as a novel candidate circRNA derived from the TLK1 gene. qRT-PCR detected the mRNA, circRNA and miRNA expression levels in RCC tissues and cells. Loss-of function experiments were executed to detect the biological roles of circTLK1 in the RCC cell phenotypes in vitro and in vivo. RNA-FISH, RNA pull-down, dual-luciferase reporter, western blot and immunohistochemistry assays were used to investigate the molecular mechanisms underlying the functions of circTLK1. Results: circTLK1 is overexpressed in RCC, and expression is positively correlated with distant metastasis and unfavorable prognosis. Silencing circTLK1 significantly inhibited RCC cell proliferation, migration and invasion in vitro and in vivo. circTLK1 was mainly distributed in the cytoplasm and positively regulated CBX4 expression by sponging miR-136-5p. Forced CBX4 expression reversed the circTLK1 suppression-induced phenotypic inhibition of RCC cells. Moreover, CBX4 expression was positively correlated with VEGFA expression in RCC tissues. CBX4 knockdown significantly inhibited VEGFA expression in RCC cells. Conclusion: Collectively, our findings demonstrate that circTLK1 plays a critical role in RCC progression by sponging miR-136-5p to increase CBX4 expression. circTLK1 may act as a diagnostic biomarker and therapeutic target for RCC.
Various studies have indicated that long non-coding RNAs (lncRNAs) play vital roles in the cancer development and progression. LncRNA hypoxia inducible factor 1alpha antisense RNA-2 (HIF1A-AS2) is upregulated in gastric carcinomas and knockdown of HIF1A-AS2 expression by siRNA could inhibit cell proliferation in vitro and tumorigenesis in vivo. Inspired by these observations, we hypothesized that HIF1A-AS2 possibly plays the analogous roles in bladder cancer. In our study, we first reported that HIF1A-AS2 was up-regulated in bladder cancer tissues and cells, and HIF1A-AS2 expression level in bladder cancer tissues is positively associated with advanced clinical pathologic grade and TNM phase. Cell proliferation inhibition, cell migration suppression and apoptosis induction were observed by silencing HIF1A-AS2 in bladder cancer T24 and 5637 cells. Overexpression of HIF1A-AS2 in SV-HUC-1 cells could promote cell proliferation, cell migration and anti-apoptosis. Besides, we utilized the emerging technology of medical synthetic biology to design tetracycline-inducible small hairpin RNA (shRNA) vector which specifically silenced HIF1A-AS2 in a dosage-dependent manner to inhibit the progression of human bladder cancer. In conclusion, our data suggested that HIF1A-AS2 plays oncogenic roles and can be used as a therapeutic target for treating human bladder cancer. Synthetic "tetracycline-on" switch system that quantitatively controlled the expression of HIF1A-AS2 in bladder cancer can inhibit the progression of bladder cancer cells in a dosage-dependent manner. Our findings provide new insights into the role of the lncRNA HIF1A-AS2 in the bladder cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.