Single-walled carbon nanotube (SWNT) films on flexible PET (polyethyleneterephthalate) substrates are used as transparent, flexible anodes for organic light-emitting diodes (OLEDs). For polymer-based OLEDs having the structure: SWNT/PEDOT-PSS:MeOH/TFB (poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine)) + TPD-Si(2) (4,4'-bis[(p-trichlorosilylpropylphenyl)phenylamino]biphenyl) /BT (poly(9,9-dioctylfluorene-co-benzothiadiazole))/CsF/Al, a maximum light output of 3500 cd/m(2) and a current efficiency of 1.6 cd/A have been achieved. The device operational lifetime is comparable to that of devices with Sn-doped In(2)O(3) (ITO)/PET anodes. The advantages of this novel type of anode over conventional ITO are discussed.
Black phosphorus (BP) as a novel class of two-dimension (2D) materials has recently attracted enormous attention as a result of its unique physical and chemical features. The remarkably strong light-matter interaction and tunable direct band-gap at a wide range make it an ideal candidate especially in the mid-infrared wavelength region as the saturable absorber (SA). In this paper, the simple and effective liquid phase exfoliation (LPE) method was used to fabricate BP. By introducing the same BP SA into two specifically designed rare earth ions doped fluoride fiber lasers at mid-infrared wavebands, Q-switching with the pulse energy of 4.93 μJ and mode-locking with the pulse duration of 8.6 ps were obtained, respectively. The operation wavelength of ~2970 nm for generated pulse is the reported longest wavelength for BP SA based fiber lasers.
Molecule-scale structure effects at indium tin oxide (ITO) anode-hole transport layer (HTL) interfaces in organic light-emitting diode (OLED) heterostructures are systematically probed via a self-assembly approach. A series of ITO anode-linked silyltriarylamine precursors differing in aryl group and linker density are synthesized for this purpose and used to probe the relationship between nanoscale interfacial chemical structure and charge-injection/electroluminescence properties. These precursors form conformal and largely pinhole-free self-assembled monolayers (SAMs) on the ITO anode surface with angstromlevel thickness control. Deposition of a HTL on top of the SAMs places the probe molecules precisely at the anode-HTL interface. OLEDs containing ITO/SAM/HTL configurations have dramatically varied hole-injection magnitudes and OLED responses. These can be correlated with the probe molecular structures and electrochemically derived heterogeneous electron-transfer rates for such triarylamine fragments. The large observed interfacial molecular structure effects offer an approach to tuning OLED hole-injection flux over 1-2 orders of magnitude, resulting in up to 3-fold variations in OLED brightness at identical bias and up to a 2 V driving voltage reduction at identical brightness. Very bright and efficient (∼70 000 cd/m 2 , ∼2.5% forward external quantum efficiency, ∼11 lm/W power efficiency) Alq (tris-(8-hydroxyquinolinato)aluminum(III))-based OLEDs can thereby be fabricated.
The precise control over the locations of hot spots in a nanostructured ensemble is of great importance in plasmon-enhanced spectroscopy, chemical sensing, and super-resolution optical imaging. However, for multiparticle configurations over metal films that involve localized and propagating surface plasmon modes, the locations of hot spots are difficult to predict due to complex plasmon competition and synergistic effects. In this work, theoretical simulations based on multiparticle-film configurations predict that the locations of hot spots can be efficiently controlled in the particle-particle gaps, the particle-film junctions, or in both, by suppressing or promoting specific plasmonic coupling effects in specific wavelength ranges. These findings offer an avenue to obtain strong Raman signals from molecules situated on single crystal surfaces and simultaneously avoid signal interference from particle-particle gaps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.