A method has been proposed for suppressing parasitic oscillation by processing the gain medium edges into arrises. The mode analysis indicates that the residual reflection at the gain medium edges decreases greatly and the required index matching level and the required cladding absorbency are reduced as well. With this method, a large choice of edge cladding material is allowed, which can help with avoiding distortion and other problems caused by thermal stress.
Pockels cell (PPC), which can use a thin crystal to perform the uniform electro-optical effect, is ideal component as average-power optical switch with large aperture. In this paper, the key problems in PPC are analyzed for repetition-rate application, and thermo-optical effects are simulated by means of numerical modeling when average power is loaded on the electro-optical crystal. By reformative design and employing a capacity to share the gas discharge voltage, the DKDP PPC driven by one pulse is realized. As gas breakdown delay time is stable, and discharge plasma is uniformly filled the full aperture, it meets the demand of plasma electrode for the repetition-rate PPC with DKDP crystal. The switch efficiency of PPC at the whole aperture is better than 99%.
Spectral properties of Nd:Sr(1-x)Y(x)F(2+x) crystals were investigated. Compared with Nd:SrF2, the spectral parameters of Nd:Sr(1-x)Y(x)F(2+x) (x=0.05,0.1) were altered in a large scale. LD-pumped true CW laser has been demonstrated in the crystals. The slope efficiency up to 43.5% in 0.43% Nd:Sr0.95Y0.05F2.05 was achieved. The system is a promising candidate for highly efficient lasers.
Thermal stress can induce birefringence in a laser medium, which can cause depolarization of the laser. The depolarization effect will be very severe in a high-average-power laser. Because the depolarization will make the frequency doubling efficiency decline, it should be compensated. In this paper, the thermal characteristics of two kinds of materials are analyzed in respect of temperature, thermal deformation and thermal stress. The depolarization result from thermal stress was simulated. Depolarization on non-uniform pumping was also simulated, and the compensation method is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.