Infectious virus outbreaks pose a significant challenge to public healthcare systems. Early and accurate virus diagnosis is critical to prevent the spread of the virus, especially when no specific vaccine or effective medicine is available. In clinics, the most commonly used viral detection methods are molecular techniques that involve the measurement of nucleic acids or proteins biomarkers. However, most clinic‐based methods require complex infrastructure and expensive equipment, which are not suitable for low‐resource settings. Over the past years, smartphone‐based point‐of‐care testing (POCT) has rapidly emerged as a potential alternative to laboratory‐based clinical diagnosis. This review summarizes the latest development of virus detection. First, laboratory‐based and POCT‐based viral diagnostic techniques are compared, both of which rely on immunosensing and nucleic acid detection. Then, various smartphone‐based POCT diagnostic techniques, including optical biosensors, electrochemical biosensors, and other types of biosensors are discussed. Moreover, this review covers the development of smartphone‐based POCT diagnostics for various viruses including COVID‐19, Ebola, influenza, Zika, HIV, et al. Finally, the prospects and challenges of smartphone‐based POCT diagnostics are discussed. It is believed that this review will aid researchers better understand the current challenges and prospects for achieving the ultimate goal of containing disease‐causing viruses worldwide.
The development of cost-effective, portable, and ease-of-use sensing system for on-site genetic diagnostics is highly desirable for pathogen screening and infectious disease diagnosis. This study develops (1) a paper-based biochip which is able to integrate the loop-mediated isothermal amplification (LAMP) protocols for simultaneous detection of
Escherichia coli
O157:H7,
Salmonella
spp., and
Staphylococcus aureus
, and (2) a stand-alone smartphone-based portable device which can control exactly 65 °C for isothermal amplification as well as collect and analyze the thus generated fluorescence signals. The reported sensing system has been successfully demonstrated for foodborne pathogen detection with a limit of detection of 2.8 × 10
−5
ng μL
−1
. Spiked milk samples with concentration as low as 10 CFU mL
−1
were successfully determined within 4 h, demonstrating the practicality of the reported sensing system in the fields. The reported sensing system featuring simplicity and reliability is ideally suited for genetic diagnostics in low resource settings.
Graphical abstract
Supplementary Information
The online version contains supplementary material available at 10.1007/s00604-022-05419-x.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.