This paper addresses the problem of self-supervised video representation learning from a new perspective -by video pace prediction. It stems from the observation that human visual system is sensitive to video pace, e.g., slow motion, a widely used technique in film making. Specifically, given a video played in natural pace, we randomly sample training clips in different paces and ask a neural network to identify the pace for each video clip. The assumption here is that the network can only succeed in such a pace reasoning task when it understands the underlying video content and learns representative spatio-temporal features. In addition, we further introduce contrastive learning to push the model towards discriminating different paces by maximizing the agreement on similar video content. To validate the effectiveness of the proposed method, we conduct extensive experiments on action recognition and video retrieval tasks with several alternative network architectures. Experimental evaluations show that our approach achieves state-of-the-art performance for self-supervised video representation learning across different network architectures and different benchmarks. The code and pre-trained models are available at https://github.com/laura-wang/video-pace.
This paper presents the development of a multisensor user interface to facilitate the instruction of arc welding tasks. Traditional methods to acquire hand-eye coordination skills are typically conducted through one-to-one instruction where trainees must wear protective helmets and conduct several tests. This approach is inefficient as the harmful light emitted from the electric arc impedes the close monitoring of the process; Practitioners can only observe a small bright spot. To tackle these problems, recent training approaches have leveraged virtual reality to safely simulate the process and visualize the geometry of the workpieces. However, the synthetic nature of these types of simulation platforms reduces their effectiveness as they fail to comprise actual welding interactions with the environment, which hinders the trainees' learning process. To provide users with a real welding experience, we have developed a new multi-sensor extended reality platform for arc welding training. Our system is composed of: (1) An HDR camera, monitoring the real welding spot in real-time; (2) A depth sensor, capturing the 3D geometry of the scene; and (3) A head-mounted VR display, visualizing the process safely. Our innovative platform provides users with a "bot trainer", virtual cues of the seam geometry, automatic spot tracking, and performance scores. To validate the platform's feasibility, we conduct extensive experiments with several welding training tasks. We show that compared with the traditional training practice and recent virtual reality approaches, our automated multi-sensor method achieves better performances in terms of accuracy, learning curve, and effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.