Zeeman cold vapor atomic absorption spectrometry (CVAAS) has been widely used for environmental mercury (Hg) detection and quantification for decades, but little is known about its utility and potential artifacts in analyzing Hg with varying isotope compositions. We show that each Hg isotope responds differently by CVAAS analysis, with 200 Hg and 202 Hg isotopes exhibiting signal intensities ∼10 times greater than those of 198 Hg and 201 Hg isotopes. However, all Hg isotopes show a linear correlation between Hg concentration and signal intensity, validated by both measurements and theoretical simulations. Zeeman CVAAS could thus offer a convenient, inexpensive tool for determining Hg isotopes, particularly in using one or two enriched Hg isotopes for tracing Hg biogeochemical transformations, such as partitioning, ion exchange, sorption−desorption, and methylation−demethylation in environmental matrices. We also caution that care must be taken when CVAAS is used for quantifying Hg in samples with changing isotope compositions to avoid measurement errors.
In this work, we review current trends in China to investigate beam plasma interaction phenomena. Recent progresses in China on low energy heavy ions and plasma interaction, ion beam-plasma interactions under the influences of magnetic fields, high energy heavy ion radiography through marginal range method, energy deposition of highly charged ions on surfaces and Raman spectroscopy of surfaces after irradiation of highly charged ions are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.