AbstractWe experimentally investigated the soliton collisions between soliton molecules and deuterogenic solitons spontaneously generated on the continuous wave (cw) noise background in an ultrafast erbium-doped fiber laser mode locked with MoS2 saturable absorber (SA). The dynamics of the soliton collisions were observed using the time-stretch dispersion Fourier transform technique. The noise-induced deuterogenic solitons first undergo spectral broadening and wavelength shifting, then collide successively with a soliton molecule and eventually vanish. Within the simple collision framework, the spectral-temporal dynamics of soliton collision would help to unveil the self-stabilization mechanism of the soliton molecules in consideration of dispersive wave shedding. This nonlinear dynamics is similar to the soliton rain, except that complex condensed soliton phase is substituted with a soliton molecule.
Passively mode-locked lasers have been widely investigated as one of the effective methods to obtain ultrashort pulses. As an important part of passively mode-locked fiber lasers, the exploration of 2D material-based saturable absorber has become one of the hotspots in ultrafast photonics in recent years. Germanene, a novel 2D Dirac material, with ultrafast optical response and broadband optical absorption, is a promising alternative material for saturable absorber in mode-locked fiber lasers. In this paper, germanium nanosheets are prepared via liquid-phase exfoliated method, with the saturable absorption property systematically characterized in three major wavebands of the near-infrared region. The generation of ultrashort pulses based on germanene saturable absorber in fiber lasers is further realized, in a broad waveband (1000 nm) centered at 1061.1, 1559.3 and 1883.5 nm, respectively. In addition, noise-like pulses operation with central wavelength of 1558.6 nm is also obtained, and the formation of rogue waves is further demonstrated via statistical analysis. To the best of our knowledge, this is the first experimental verification of the broadband saturable absorption property of germanene-based devices, covering three major fiber laser wavelengths from 1.0 to 2.0 μm.
The dynamics of optical soliton molecules in ultrafast lasers can reveal the intrinsic self-organized characteristics of dissipative systems. The photonic time-stretch dispersive Fourier transformation (TS-DFT) technology provides an effective method to observe the internal motion of soliton molecules real time. However, the evolution of complex soliton molecular structures has not been reconstructed from TS-DFT data satisfactorily. We train a residual convolutional neural network (RCNN) with simulated TS-DFT data and validate it using arbitrarily generated TS-DFT data to retrieve the separation and relative phase of solitons in three- and six-soliton molecules. Then, we use RCNNs to analyze the experimental TS-DFT data of three-soliton molecules in a passive mode-locked laser. The solitons can exhibit different phase evolution processes and have compound vibration frequencies simultaneously. The phase evolutions exhibit behavior consistent with single-shot autocorrelation results. Compared with autocorrelation methods, the RCNN can obtain the actual phase difference and analyze soliton molecules comprising more solitons and almost equally spaced soliton pairs. This study provides an effective method for exploring complex soliton molecule dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.