To investigate tumor clonal evolution in hepatocellular carcinoma (HCC), we collected 31 tumor samples,16 peritumor samples and matched PBMCs from 11 long-term follow-up patients with HCC. Whole-exome sequencing was performed to obtain SNVs and CNVs for each sample. An average of 652.2 somatic mutations were identified in each patient and the mean percentage of nonubiquitous tumor mutations was 63.7% (range, 0.7%-100%), reflecting the variety of tumor heterogeneity. Further analysis of clonal evolution was conducted based on mutation clustering results and revealed that different clonal evolution patterns indeed existed in single and multifocal HCC while these patterns were significantly correlated to patients' clinical course. These patterns clearly demonstrated different mechanisms of tumor recurrence. During tumor clonal evolution, potential therapeutic targets also emerged and vanished dynamically. Moreover, mutation analysis revealed that the contribution of mutational signature was correlated with clonal evolution history. Target sequencing of follow-up plasma samples also confirmed that ctDNA level could dynamically reflect tumor clonal/subclonal burden. By investigating clonal evolution in HCC patients, our analysis revealed that different patterns indeed existed during HCC progression and proposed a novel strategy for identifying the origin of recurrent tumor as well as optimizing treatment selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.