By employing a single AlGaN layer with low Al composition, high quality and uniformity AlGaN/GaN heterostructures have been successfully grown on Si substrates by metal-organic chemical vapor deposition (MOCVD). The heterostructures exhibit a high electron mobility of 2150 cm2 /Vs with an electron density of 9.3 × 10 12 cm −2 . The sheet resistance is 313 ± 4 Ω/◻ with ±1.3% variation. The high uniformity is attributed to the reduced wafer bow resulting from the balance of the compressive stress induced and consumed during the growth, and the thermal tensile stress induced during the cooling down process. By a combination of theoretical calculations and in situ wafer curvature measurements, we find that the compressive stress consumed by the dislocation relaxation (~1.2 GPa) is comparable to the value of the thermal tensile stress (~1.4 GPa) and we should pay more attention to it during growth of GaN on Si substrates. Our results demonstrate a promising approach to simplifying the growth processes of GaN-on-Si to reduce the wafer bow and lower the cost while maintaining high material quality.Recently, AlGaN/GaN heterostructures grown on Si substrates have attracted much attention for high power, high frequency, and high temperature applications [1][2][3][4] . These can offer several advantages such as large wafer size, high thermal conductivity, low cost, and great potential of the compatibility with existing processing technologies developed for Si integrated circuits [5][6][7][8] . Despite the promising applications, GaN-on-Si technology is facing reproducibility and reliability issues, which are likely to be related to growth processes and crystalline quality (defects and residual stress) 1,9 . Due to the large lattice mismatch and thermal mismatch between GaN and Si substrates, it is challenging to grow high-quality and stress-free GaN-based epilayers. Several complicated stress-control approaches such as patterned Si substrate technology 10 , LT-AlN 11 , AlN/GaN superlattice 12,13 , and compositionally graded AlGaN layer 14,15 have been proposed to achieve crack-free GaN based heterostructures. However, the crystalline quality (defects and residual stress), as well as uniformity issues still remain, especially for growth onto large diameter substrates.For the method with compositionally graded buffers, three step-graded AlGaN (with Al composition of about 75%, 50% and 25%) or multiple step-graded AlGaN buffers with thickness up to 1 μm are generally used [15][16][17] . The main purpose of this method is to slow down the relaxation rate of compressive stress by decreasing the lattice mismatch between the two neighbouring layers. There is thus a larger compressive stress accumulated in the GaN layer during the growth at high temperature. One issue in this case with thick buffers is that the wafer is convexly bowed. As a result, it will significantly affect the wafer uniformity during the subsequent growth. Another issue is that the growth rate of AlGaN ternary alloy is generally lower than that of GaN layer an...
Epitaxial growth of AlN films on c-sapphire using a multilayer structure has been investigated by metalorganic chemical vapor deposition adopting multiple alternation cycles of low-and high-temperature (LT-HT) growth. It is found that the surface morphology and crystal quality can be greatly improved using three alternation cycles with X-ray diffraction ω-scan full width at half maximum values of 311 and 548 arcsec for the (0002) and (10−12) peaks, respectively, which are induced by the alternation of the three-dimensional (3D) and two-dimensional (2D) growth modes caused by the LT-HT process. The first 3D-2D cycle is found to play a major role in threading dislocation reduction, while the second and third cycles mainly account for tensile stress relaxation. CrystEngCommThis journal is
A large lattice-mismatch induced stress control technology with a low Al content AlGaN layer has been used to grow high quality GaN layers on 4-in. Si substrates. The use of this technology allows for high mobility AlGaN/GaN heterostructures with electron mobility of 2040 cm2/(V·s) at sheet charge density of 8.4 × 1012 cm−2. Strain relaxation and dislocation evolution mechanisms have been investigated. It is demonstrated that the large lattice mismatch between the low Al content AlGaN layer and AlN buffer layer could effectively promote the edge dislocation inclination with relatively large bend angles and therefore significantly reduce the dislocation density in the GaN epilayer. Our results show a great potential for fabrication of low-cost and high performance GaN-on-Si power devices.
We report on a GaN/AlN quantum cascade detector operating in an extended spectral range going from the mid-infrared to visible wavelengths. This broadband detection is achieved thanks to the design of active quantum wells supporting five bound-to-bound intersubband transitions. The photodetector exhibits a broad signal between 4.1 μm and 550 nm. The photocurrent persists up to room temperature. The calibrated responsivity at 77 K under irradiation through a 45° angle polished facet amounts to 7 μA/W at a wavelength of 633 nm and is peaked at 14 μA/W at a wavelength of 720 nm.
Due to the intrinsic spontaneous and piezoelectric polarization effect, III‐nitride semiconductor heterostructures are promising candidates for generating 2D electron gas (2DEG) system. Among III‐nitrides, InN is predicted to be the best conductive‐channel material because its electrons have the smallest effective mass and it exhibits large band offsets at the heterointerface of GaN/InN or AlN/InN. Until now, that prediction has remained theoretical, due to a giant gap between the optimal growth windows of InN and GaN, and the difficult epitaxial growth of InN in general. The experimental realization of 2DEG at an InGaN/InN heterointerface grown by molecular beam epitaxy is reported here. The directly probed electron mobility and the sheet electron density of the InGaN/InN heterostructure are determined by Hall‐effect measurements at room temperature to be 2.29 × 103 cm2 V−1 s−1 and 2.14 × 1013 cm−2, respectively, including contribution from the InN bottom layer. The Shubnikov–de Haas results at 3 K confirm that the 2DEG has an electron density of 3.30 × 1012 cm−2 and a quantum mobility of 1.48 × 103 cm2 V−1 s−1. The experimental observations of 2DEG at the InGaN/InN heterointerface have paved the way for fabricating higher‐speed transistors based on an InN channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.