Large-aspect-ratio composite nanofibers with interior hierarchical interfaces are employed to break the adverse coupling of electric displacement and breakdown strength in flexible poly(vinylidene fluoride-hexafluoropropylene) nanocomposite films, a small loading of 3 vol% BaTiO3@TiO2 nanofibers gives rise to the highestenergy density (≈31.2 J cm(-3)) ever achieved in polymer nanocomposites dielectrics.
Manipulating microstructures of composites in three dimensions has been a long standing challenge. An approach is proposed and demonstrated to fabricate artificial nanocomposites by controlling the 3D distribution and orientation of oxide nanoparticles in a polymer matrix. In addition to possessing much enhanced mechanical properties, these nanocomposites can sustain extremely high voltages up to ≈10 kV, exhibiting high dielectric breakdown strength and low leakage current. These nanocomposites show great promise in resolving the paradox between dielectric constant and breakdown strength, leading to ultrahigh electrical energy density (over 2000% higher than that of the bench-mark polymer dielectrics) and discharge efficiency. This approach opens up a new avenue for the design and modulation of nanocomposites. It is adaptable to the roll-to-roll fabrication process and could be employed as a general technique for the mass production of composites with intricate nanostructures, which is otherwise not possible using conventional polymer processing techniques.
Poly(vinylidene fluoride) (PVDF) based polymer nanocomposites with high‐permittivity nanofillers exhibit outstanding dielectric energy storage performance due to their high dielectric permittivities and breakdown strength. However, their discharge efficiency is relatively low (usually lower than 70%), which limits their practical applications. Here, polymer nanocomposites with a novel interpenetrating gradient structure are designed and demonstrated by cofilling a PVDF matrix with barium zirconate titanate nanofibers and hexagonal boron nitride nanosheets via modified nonequilibrium processing. The interpenetrating gradient structure is highly effective in breaking the trade‐off between discharge energy density and efficiency of the corresponding nanocomposite, as indicated by the concomitantly enhanced discharge energy density (U
e ≈ 23.4 J cm−3) and discharge efficiency (η ≈ 83%). The superior performance is primarily attributed to the rational distribution of nanofillers in the polymer matrix, which raises the height of the potential barrier for charge injection at the dielectric/electrode interface, suppresses electric conduction and contributes to enhanced apparent breakdown strength. Meanwhile, the gradient configuration allows higher volume fraction of high‐permittivity nanofillers without compromising the breakdown strength, leading to higher electric polarization compared with the random configuration. This work provides new opportunities to PVDF‐based polymer nanocomposites with high energy density and discharge efficiency for capacitive energy storage applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.