Recognition of safety helmets wearing by construction workers is a common target detection topic in applications of deep learning-based image processing. This paper provides a study of an enhanced YOLOv5-based method, in which the challenges caused by complicated construction environment backgrounds, dense targets, and the irregular shape of safety helmets are addressed. In a trunk network, feature extraction is more based on the target shape by using the Deformable Convolution Net instead of the conventional convolution; in the Neck, a Convolutional Block Attention Module is introduced to weaken feature extraction of complex backgrounds by giving weights to enhance the characterization ability of target features; and the original network's Generalized Intersection over Union Loss is replaced by Distance Intersection over Union Loss to overcome the problem of erroneous location when the population is dense. The dataset for the training network is created by mixing open-source datasets with autonomous collecting to evaluate the effectiveness of the algorithm. We observed that the improved model has a detection accuracy of 91.6%, up 2.3% over the original network model, and a detection speed of 29 frames per second, which is compliant with most security cameras' capture frame rate.
To prevent the frequent occurrence of transmission line galloping accidents, many scholars have carried out studies. However, there are still many difficulties that have not been solved. To address the issues that have arisen during the installation of the monitoring system, a new installation technique for the galloping monitoring terminal structure has been developed, and structural design and transmission line impact have been taken into account. A method combining Kalman and Mahony complementary filtering has been shown to solve the problem of wire twisting when galloping is taken into account. The displacement is derived by double-integrating the acceleration, although the trend term has a significant impact on the integration result. To handle the trend term issue and other error effects, a method combining the least-squares method, the adaptive smoothing method, and the time-frequency domain hybrid integration approach is used. Finally, the monitoring terminal’s structural design is simulated and evaluated, and the measured amplitude is assessed on a galloping standard test bench. The difference between the measured amplitude and the laboratory standard value is less than 10%, meeting the engineering design criteria. And the galloping trajectory is identical to the test bench trajectory, which is critical for user end monitoring.
A bearing is a critical component in the transmission of rotating machinery. However, due to prolonged exposure to heavy loads and high-speed environments, rolling bearings are highly susceptible to faults, Hence, it is crucial to enhance bearing fault diagnosis to ensure safe and reliable operation of rotating machinery. In order to achieve this, a rotating machinery fault diagnosis method based on a deep convolutional neural network (DCNN) and Whale Optimization Algorithm (WOA) optimized Deep Extreme Learning Machine (DELM) is proposed in this paper. DCNN is a combination of the Efficient Channel Attention Net (ECA-Net) and Bi-directional Long Short-Term Memory (BiLSTM). In this method, firstly, a DCNN classification network is constructed. The ECA-Net and BiLSTM are brought into the deep convolutional neural network to extract critical features. Next, the WOA is used to optimize the weight of the initial input layer of DELM to build the WOA-DELM classifier model. Finally, the features extracted by the Improved DCNN (IDCNN) are sent to the WOA-DELM model for bearing fault diagnosis. The diagnostic capability of the proposed IDCNN-WOA-DELM method was evaluated through multiple-condition fault diagnosis experiments using the CWRU-bearing dataset with various settings, and comparative tests against other methods were conducted as well. The results indicate that the proposed method demonstrates good diagnostic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.