The Overview, Design concepts and Details (ODD) protocol for describing Individual-and Agent-Based Models (ABMs) is now widely accepted and used to document such models in journal articles. As a standardized document for providing a consistent, logical and readable account of the structure and dynamics of ABMs, some research groups also find it useful as a workflow for model design. Even so, there are still limitations to ODD that obstruct its more widespread adoption. Such limitations are discussed and addressed in this paper: the limited availability of guidance on how to use ODD; the length of ODD documents; limitations of ODD for highly complex models; lack of su icient details of many ODDs to enable reimplementation without access to the model code; and the lack of provision for sections in the document structure covering model design rationale, the model's underlying narrative, and the means by which the model's fitness for purpose is evaluated. We document the steps we have taken to provide better guidance on: structuring complex ODDs and an ODD summary for inclusion in a journal article (with full details in supplementary material; Table ); using ODD to JASSS, ( ) , http://jasss.soc.surrey.ac.uk/ / / .html Doi: . /jasss.point readers to relevant sections of the model code; update the document structure to include sections on model rationale and evaluation. We also further advocate the need for standard descriptions of simulation experiments and argue that ODD can in principle be used for any type of simulation model. Thereby ODD would provide a lingua franca for simulation modelling.
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ?
Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Agent based models (ABMs) simulate actions and interactions of autonomous agents/groups and their effect on systems as a whole, accounting for learning without assuming perfect rationality or complete knowledge. ABMs are an increasingly popular approach to studying complex, spatially distributed socio-environmental systems, but have still to become an established approach in the sense of being one that is expected by those wanting to explore scenarios in such systems. Partly, this is an issue of awareness -ABM is still new enough that many people have not heard of it; partly, it is an issue of confidence -ABM has more to do to prove itself if it is to become a preferred method. This paper will identify advances in the craft and deployment of ABM needed if ABM is to become an accepted part of mainstream science for policy or stakeholders. The conduct of ABM has, over the last decade, seen a transition from using abstracted representations of systems (supporting theory-led thought experiments) to more accessible representations derived empirically (to deliver more applied analysis). This has enhanced the perception of potential users of ABM outputs that the latter are salient and credible. Empirical ABM is not, however, a panacea, as it demands more computing and data resources, limiting applications to domains where data exist along with suitable environmental models where these are required. Further, empirical ABM is still facing serious questions of validation and the ontology used to describe the system in the first place. Using Geoffrey A. Moore's Crossing the Chasm as a lens, we argue that the way ahead for ABM lies in identifying the niches in which it can best demonstrate its advantages, working with collaborators to demonstrate that it can deliver on its promises. This leads us to identify several areas where work is needed.
Despite reaching a point of acceptance as a research tool across the geographical and social sciences, there remain significant methodological challenges for agent‐based models. These include recognizing and simulating emergent phenomena, agent representation, construction of behavioral rules, and calibration and validation. While advances in individual‐level data and computing power have opened up new research avenues, they have also brought with them a new set of challenges. This article reviews some of the challenges that the field has faced, the opportunities available to advance the state‐of‐the‐art, and the outlook for the field over the next decade. We argue that although agent‐based models continue to have enormous promise as a means of developing dynamic spatial simulations, the field needs to fully embrace the potential offered by approaches from machine learning to allow us to fully broaden and deepen our understanding of geographical systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.