Organotin anticancer agent di-n-butyl-di-(4-chlorobenzohydroxamato)tin(iv) (DBDCT) exerted an inhibitory effect on its major metabolic enzyme cytochrome CYP3A.
Background
Waxy corn has a short growth cycle and high multiple cropping index. However, after being planted in early spring, late autumn and winter, it is susceptible to low temperature (LT), which reduces the emergence rate and yield. Therefore, it is important to analyze the response mechanism of waxy corn under LT stress.
Results
All phenotype indexes of waxy corn inbred lines N28 were significantly higher than waxy corn inbred lines N67 under LT. With the increase of LT stress time, all physiological indexes showed an upward trend in N28 and N67. Differentially expressed genes (DEGs) 16,017 and 14,435 were identified in N28 and N67 compared with nongerminated control under LT germination, respectively, and differential metabolites 127 and 93 were detected in N28 and N67, respectively. In addition, the expression level of some genes involved in plant hormones and mitogen activated protein kinase (MAPK) signaling pathways was significantly up-regulated in N28. Compared with N67, flavonoid metabolites were also significantly enriched in N28 under LT germination.
Conclusion
Under LT stress, the inbred lines N28 was significantly higher than the inbred lines N67 in the phenotypic and physiological indices of cold resistance. Compared with N67, the expression levels of some genes involved in the plant hormones and MAPK pathways were significantly up-regulated in N28, and flavonoid metabolites were also significantly enriched in N28 under LT stress. These genes and metabolites may help N28 to improve cold resistance and may be as potential target genes for cold resistance breeding in waxy corn.
Dibutyltin dilaurate (DBTD) has multiple applications in daily life. However, DBTD is easily deposited in the liver and affects liver functions. This study was designed to explore the effects of DBTD on triglyceride metabolism in human normal hepatocyte HL7702 cells. Our results showed that the intracellular fat contents were dose-dependently decreased by DBTD. The expression of lipolysis genes and proteins were elevated while the lipogenesis genes and proteins were diminished by DBTD. The phosphorylation levels of ribosomal S6 kinase 1 were reduced by both rapamycin and DBTD, indicating that the mTOR pathway was suppressed possibly. The decreased sterol regulatory element-binding protein 1C (SREBP1C) transcription levels, as well as the increased peroxisome proliferator-activated receptor alpha (PPARα) transcription levels, caused by rapamycin and DBTD corresponded to the inactive mTOR pathway. In conclusion, it was possible that DBTD reduced the intracellular triglyceride through depressing the mTOR pathway and affecting its downstream transcription factors.
Diorganotin(IV) antitumor compound bis-[2,6-difluoro-N-(hydroxyl-<κ>O)benzamidato-<κ>O] (DBDF2,6T) was one of the novel patent organotin compounds with high antitumor activity and relatively low toxicity. In this study, several methods were used to study the interaction between DBDF2,6T and hPPARγ protein, including fluorescence quenching, three-dimensional (3D) fluorescence, drug affinity responsive target stability (DARTS), ultrafiltration-LC, and molecular docking. According to the experimental results, the quenching process of the hPPARγ protein was induced by static quenching mode to form a nonradiative ground-state complex with DBDF2,6T spontaneously, mainly through the hydrophobic force. DBDF2,6T could bind to the hPPARγ protein directly and give the protein the ability of antienzymatic hydrolysis. And the binding mode of DBDF2,6T into hPPARγ protein appeared to have an orientation towards residues of SER342 and GLY284. In conclusion, these methods could comprehensively reveal the interaction details of DBDF2,6T and the hPPARγ protein and established a feasible way to preliminarily identify the agonist compounds for the hPPARγ protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.