Background and Purpose Naringenin, a flavonoid compound with strong anti‐inflammatory activity, attenuated non‐alcoholic fatty liver disease (NAFLD) induced by a methionine‐choline deficient (MCD) diet in mice. However, the mechanisms underlying this suppression of inflammation and NAFLD remain unknown. Experimental Approach WT and NLRP3−/− mice were fed with MCD diet for 7 days to induce NAFLD and were given naringenin by gavage at the same time. in vitro experiments used HepG2 cells, primary hepatocytes, and Kupffer cells (KCs) stimulated by LPS or LPS plus oleic acid (OA). Key Results Treating WT mice with naringenin (100 mg·kg−1·day−1) attenuated hepatic lipid accumulation and inflammation in the livers of mice given the MCD diet. NLRP3−/− mice showed less hepatic lipid accumulation than WT mice, but naringenin did not ameliorate hepatic lipid accumulation further in NLRP3−/− mice. Treating the HepG2 cells with naringenin or NLRP3 inhibitor MCC950 reduced lipid accumulation. Naringenin inhibited activation of the NLRP3/NF‐κB pathway stimulated by OA together with LPS. In KCs isolated from WT mice, naringenin inhibited NLRP3 expression. Naringenin also inhibited lipid deposition, NLRP3 and IL‐1β expression in WT hepatocytes but was not effective in NLRP3−/− hepatocytes. After re‐expressing NLRP3 in NLRP3−/− hepatocytes by adenovirus, the anti‐lipid deposition effect of naringenin was restored. Conclusion and Implications Naringenin prevented NAFLD via down‐regulating the NLRP3/NF‐κB signalling pathway both in KCs and in hepatocytes, thus attenuating inflammation in the mice livers.
We previously demonstrated using noninvasive technologies that the interferon-gamma (IFN-γ) receptor complex is preassembled [1]. In this report we determined how the receptor complex is preassembled and how the ligand-mediated conformational changes occur. The interaction of Stat1 with IFN-γR1 results in a conformational change localized to IFN-γR1. Jak1 but not Jak2 is required for the two chains of the IFN-γ receptor complex (IFN-γR1 and IFN-γR2) to interact; however, the presence of both Jak1 and Jak2 is required to see any ligand-dependant conformational change. Two IFN-γR2 chains interact through species-specific determinants in their extracellular domains. Finally, these determinants also participate in the interaction of IFN-γR2 with IFN-γR1. These results agree with a detailed model of the IFN-γ receptor that requires the receptor chains to be pre-associated constitutively for the receptor to be active.
Soybean (Glycine max) is an important oil crop in agricultural production, but low phosphorus (P) availability limits soybean growth and production. Expansin is a family of plant cell wall proteins and involved in a variety of physiological processes, including cell division and enlargement, root growth and leaf development. To test the potential effects of expansins on crop production, we have developed soybean transgenic plants overexpressing a soybean β-expansin gene GmEXPB2, which was significantly induced by phosphate (Pi) starvation. The results indicated that constitutive overexpression of GmEXPB2 promoted leaf expansion, sequentially stimulated root growth and consequently resulted in improved P efficiency in the transgenic plants under P-limited conditions in hydroponics. In particular, when tested in calcareous (CS) and acid soils (AS), the two GmEXPB2 transgenic soybean lines showed above 25 and 40% increases in plant dry weight and P content, respectively to wild-type plants in low-P CS, but not in AS. To our knowledge, this is the first report in which improvement of P efficiency could be achieved through constitutive overexpression of an endogenous EXPB gene in soybean. These findings suggest that genetic modification of root and leaf traits might be a suitable strategy for improving crop production in low-P soils.
Tumor necrosis factor receptor II (TNFRII) is one of the TNF receptor superfamily members and our recent pathological studies show that TNFRII is deficient in the brains of Alzheimer's disease (AD). However, the mechanisms of TNFRII in AD pathogenesis remain unclear. In the present study, by using the gene-targeting approach to delete TNFRII in AD transgenic mouse model, we found that, in the brain of APP23 mice with TNFRII deletion (APP23/TNFRII(-/-)), AD-like pathology, i.e. plaque formation and microglial activation, occurs as early as 6 months of age. To test whether the increased levels of Aβ plaques was due to elevated Aβ, we measured Aβ and found that Aβ levels indeed were significantly increased at this age. Because β-secretase, BACE1, is critical enzyme for Aβ production, we have examined BACE1 and found that BACE1 is increased in both protein levels and enzymatic activity as early as 6 months of age; Having shown that BACE1 promoter region contains NF-κB binding sites, we found that cytoplasmic NF-κB was elevated and SUMO1 binding to IκBα was decreased. To further verify these findings, we have overexpressed TNFRII and identified that overexpressing TNFRII can reverse the findings from APP23/TNFRII(-/-) mice. Altogether, our results demonstrate novel roles of TNFRII in the regulation of Aβ production, suggesting a potential therapeutic strategy for AD by up-regulating TNFRII levels and elevating phosphorylated IκBα by SUMOylation.
Our experiments were designed to test the hypothesis that the cell surface interferon ␥ receptor chains are preassembled rather than associated by ligand and to assess the molecular changes on ligand binding. To accomplish this, we used fluorescence resonance energy transfer, a powerful spectroscopic technique that has been used to determine molecular interactions and distances between the donor and acceptor. However, current commercial instruments do not provide sufficient sensitivity or the full spectra to provide decisive results of interactions be-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.