Abstract:In this study, 52 asymptotic Curve Number (CN) regression equations were developed for combinations of representative land covers and hydrologic soil groups. In addition, to overcome the limitations of the original Long-term Hydrologic Impact Assessment (L-THIA) model when it is applied to larger watersheds, a watershed-scale L-THIA Asymptotic CN (ACN) regression equation model (watershed-scale L-THIA ACN model) was developed by integrating the asymptotic CN regressions and various modules for direct runoff/baseflow/channel routing. The watershed-scale L-THIA ACN model was applied to four watersheds in South Korea to evaluate the accuracy of its streamflow prediction. The coefficient of determination (R 2 ) and Nash-Sutcliffe Efficiency (NSE) values for observed versus simulated streamflows over intervals of eight days were greater than 0.6 for all four of the watersheds. The watershed-scale L-THIA ACN model, including the asymptotic CN regression equation method, can simulate long-term streamflow sufficiently well with the ten parameters that have been added for the characterization of streamflow.
We performed bias correction in future climate change scenarios to provide better accuracy of models through adaptation to future climate change. The proposed combination of the change factor (CF) and quantile mapping (QM) methods combines the individual advantages of both methods for adjusting the bias in global circulation models (GCMs) and regional circulation models (RCMs). We selected a study site in Songwol-dong, Seoul, Republic of Korea, to test and assess our proposed method. Our results show that the combined CF + QM method delivers better performance in terms of correcting the bias in GCMs/RCMs than when both methods are applied individually. In particular, our proposed method considerably improved the bias-corrected precipitation by capturing both the high peaks and amounts of precipitation as compared to that from the CF-only and QM-only methods. Thus, our proposed method can provide high-accuracy bias-corrected precipitation data, which could prove to be highly useful in interdisciplinary studies across the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.