Integrins are a family of transmembrane glycoprotein signaling receptors that can transmit bioinformation bidirectionally across the plasma membrane. Integrin αIIbβ3 is expressed at a high level in platelets and their progenitors, where it plays a central role in platelet functions, hemostasis, and arterial thrombosis. Integrin αIIbβ3 also participates in cancer progression, such as tumor cell proliferation and metastasis. In resting platelets, integrin αIIbβ3 adopts an inactive conformation. Upon agonist stimulation, the transduction of inside-out signals leads integrin αIIbβ3 to switch from a low-to high-affinity state for fibrinogen and other ligands. Ligand binding causes integrin clustering and subsequently promotes outside-in signaling, which initiates and amplifies a range of cellular events to drive essential platelet functions such as spreading, aggregation, clot retraction, and thrombus consolidation. Regulation of the bidirectional signaling of integrin αIIbβ3 requires the involvement of numerous interacting proteins, which associate with the cytoplasmic tails of αIIbβ3 in particular. Integrin αIIbβ3 and its signaling pathways are considered promising targets for antithrombotic therapy. This review describes the bidirectional signal transduction of integrin αIIbβ3 in platelets, as well as the proteins responsible for its regulation and therapeutic agents that target integrin αIIbβ3 and its signaling pathways.
Lightweight and strong structural materials attract much attention due to their strategic applications in sports, transportation, aerospace, and biomedical industries. Nacre exhibits high strength and toughness from the brick-and-mortar–like structure. Here, we present a route to build nacre-inspired hierarchical structures with complex three-dimensional (3D) shapes by electrically assisted 3D printing. Graphene nanoplatelets (GNs) are aligned by the electric field (433 V/cm) during 3D printing and act as bricks with the polymer matrix in between as mortar. The 3D-printed nacre with aligned GNs (2 weight %) shows lightweight property (1.06 g/cm3) while exhibiting comparable specific toughness and strength to the natural nacre. In addition, the 3D-printed lightweight smart armor with aligned GNs can sense its damage with a hesitated resistance change. This study highlights interesting possibilities for bioinspired structures, with integrated mechanical reinforcement and electrical self-sensing capabilities for biomedical applications, aerospace engineering, as well as military and sports armors.
Thermoelectric
generators (TEGs) provide a unique solution for
energy harvesting from waste heat, presenting a potential solution
for green energy. However, traditional rigid and flexible TEGs cannot
work on complex and dynamic surfaces. Here, we report a stretchable
TEG (S-TEG) (over 50% stretchability of the entire device) that is
geometrically suitable for various complex and dynamic surfaces of
heat sources. The S-TEG consists of hot-pressed nanolayered p-(Sb2Te3) and n-(Bi2Te3)-type
thermoelectric couple arrays and exploits the wavy serpentine interconnects
to integrate all units. The internal resistance of a 10 × 10
array is 22 ohm, and the output power is ∼0.15 mW/cm2 at ΔT = 19 K on both developable and nondevelopable
surfaces, which are much improved compared with those of existing
S-TEGs. The energy harvesting of S-TEG from the dynamic surfaces of
the human skin offers a potential energy solution for the wearable
devices for health monitoring.
Tactile sensors have been used for haptic perception in intelligent robotics, smart prosthetics, and human-machine interface. The development of multifunctional tactile sensor remains a challenge and limit its application in flexible electronics and devices. We propose a liquid metal based tactile sensor for both temperature and force sensing which is made by 3D printing. The structural design and working principle of liquid metal based tactile sensor are firstly described. A digital light processing-based printing process is developed to print two kinds of photosensitive resins with different hardness, and used to fabricate the tactile sensor. A Wheatstone bridge circuit is designed for decoupling the temperature and forces from the measured output voltages. Characterization tests show that the tactile sensor has relatively high force sensing sensitivity of 0.29 N -1 , and temperature sensing sensitivities are 0.55% °C −1 at 20 ~ 50 °C and 0.21% °C −1 at 50 ~ 80 °C, respectively. Then, the fabricated tactile sensor is mounted onto hand finger to measure the contact force and temperature during grasping. Results show that the 3D printed tactile sensor has excellent flexibility and durability and can accurately measure the temperature and contact forces, which demonstrate its potential in robotic manipulation applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.