Laccases, as early as 1959, were proposed to catalyze the oxidative polymerization of monolignols. Genetic evidence in support of this hypothesis has been elusive due to functional redundancy of laccase genes. An Arabidopsis double mutant demonstrated the involvement of laccases in lignin biosynthesis. We previously identified a subset of laccase genes to be targets of a microRNA (miRNA) ptr-miR397a in Populus trichocarpa. To elucidate the roles of ptr-miR397a and its targets, we characterized the laccase gene family and identified 49 laccase gene models, of which 29 were predicted to be targets of ptr-miR397a. We overexpressed PtrMIR397a in transgenic P. trichocarpa. In each of all nine transgenic lines tested, 17 PtrLACs were down-regulated as analyzed by RNAseq. Transgenic lines with severe reduction in the expression of these laccase genes resulted in an ∼40% decrease in the total laccase activity. Overexpression of Ptr-MIR397a in these transgenic lines also reduced lignin content, whereas levels of all monolignol biosynthetic gene transcripts remained unchanged. A hierarchical genetic regulatory network (GRN) built by a bottom-up graphic Gaussian model algorithm provides additional support for a role of ptr-miR397a as a negative regulator of laccases for lignin biosynthesis. Full transcriptome-based differential gene expression in the overexpressed transgenics and protein domain analyses implicate previously unidentified transcription factors and their targets in an extended hierarchical GRN including ptr-miR397a and laccases that coregulate lignin biosynthesis in wood formation. Ptr-miR397a, laccases, and other regulatory components of this network may provide additional strategies for genetic manipulation of lignin content.L ignin, an abundant biological polymer affecting the ecology of the terrestrial biosphere, is vital for the integrity of plant cell walls, the strength of stems, and resistance against pests and pathogens (1). Lignin is also a major barrier in the pulping and biomass-to-ethanol processes (2-4). For extracting cellulose (pulping) or for enzymatic degradation of cellulose for bioethanol, harsh chemical or physical treatments are used to reduce interactions with lignin or other cell wall components (2-4). Reducing lignin content or altering lignin structure to reduce its recalcitrance are major goals for more efficient processing.Lignin is polymerized primarily from three monolignol precursors, p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol (1, 5). Over five decades, efforts have been made to understand the biosynthesis of the primary monolignols and to modify the quantity or composition of lignin. The polymerization of monolignols into a lignin polymer has long been thought to occur through oxidative polymerization catalyzed by either laccases or peroxidases (6). The mechanisms and specificity of the roles of the oxidative enzymes in lignin polymerization have been controversial (7).Laccases (EC. 1.10.3.2) are multicopper oxidoreductases. Plant laccase was the first enzyme sh...
Gibberella ear rot, caused by the fungus Fusarium graminearum Schwabe, is a serious disease of corn (Zea mays) grown in northern climates. Infected corn is lower yielding and contains toxins that are dangerous to livestock and humans. Resistance to ear rot in corn is quantitative, specific to the mode of fungal entry (silk channels or kernel wounds), and highly influenced by the environment. Evaluations of ear rot resistance are complex and subjective; and they need to be repeated over several years. All of these factors have hampered attempts to develop F. graminearum resistant corn varieties. The aim of this study was to identify molecular markers linked to the genes for resistance to Gibberella ear rot. A recombinant inbred (RI) population, produced from a cross between a Gibberella ear rot resistant line (CO387) and a susceptible line (CG62), was field-inoculated and scored for Gibberella ear rot symptoms in the F4, F6, and F7 generations. The distributions of disease scores were continuous, indicating that resistance is probably conditioned by multiple loci. A molecular linkage map, based on segregation in the F5 RI population, contained 162 markers distributed over 10 linkage groups and had a total length of 2237 cM with an average distance between markers of 13.8 cM. Composite interval mapping identified 11 quantitative trait loci (QTLs) for Gibberella ear rot resistance following silk inoculation and 18 QTLs following kernel inoculation in 4 environments that accounted for 6.7%-35% of the total phenotypic variation. Only 2 QTLs (on linkage group 7) were detected in more than 1 test for silk resistance, and only 1 QTL (on linkage group 5) was detected in more than 1 test for kernel resistance, confirming the strong influence of the environment on these traits. The majority of the favorable alleles were derived from the resistant parent (CO387). The germplasm and markers for QTLs with significant phenotypic effects may be useful for marker-assisted selection to incorporate Gibberella ear rot resistance into commercial corn cultivars.
Numerous studies have found that sucrose (Suc) metabolism plays a crucial role in the environmental stress response of many plant species. The majority of Suc metabolism-associated reports refer to acid invertases (Ac-Invs). However, alkaline/neutral Invs (A/N-Invs) have been poorly studied. In this study, a wheat A/N-Inv gene, Ta-A/N-Inv1, with three copies located on chromosomes 4A, 4B, and 4D, was cloned from a wheat-Puccinia striiformis f. sp. tritici (Pst) interaction cDNA library. Transcripts of the three Ta-A/N-Inv1 copies were up-regulated in wheat leaves that were infected by Pst or had experienced certain abiotic treatments. Furthermore, the expression of Ta-A/N-Inv1 was decreased by treatment with exogenous hormones. Heterologous mutant complementation and subcellular localization revealed that Ta-A/N-Inv1 is a cytoplasmic invertase. Knocking down all three copies of Ta-A/N-Inv1 using the barley stripe mosaic virus-induced gene silencing system reduced the susceptibility of wheat to the Pst virulent pathotype CYR31, which is associated with pathogen-induced H2O2 accumulation and enhanced necrosis. Interestingly, 48h dark treatment of the Ta-A/N-Inv1-knockdown plants immediately after inoculation abrogated their enhanced resistance, suggesting that H2O2 production and its associated cell death and resistance in the Ta-A/N-Inv1-silenced plants require light. Consistent with this observation, photosynthesis and reactive oxygen species (ROS)-related genes were significantly up-regulated in the Ta-A/N-Inv1-knockdown plants infected by CYR31 under light exposure. These results suggest that Ta-A/N-Inv1 might act as a negative regulator in wheat disease resistance to Pst by increasing cytoplasmic hexose accumulation and downregulating photosynthesis of the leaves to avoid cell death due to excessive ROS production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.