Macrophage recruitment and pro-inflammatory differentiation are hallmarks of various diseases, including infection and sepsis. Although studies suggest that mitochondria may regulate macrophage immune responses, it remains unclear whether mitochondrial mass affects macrophage pro-inflammatory differentiation. Here, we found that lipopolysaccharide (LPS)-activated macrophages possess higher mitochondrial mass than resting cells. Therefore, this study aimed to explore the functional role and molecular mechanisms of increased mitochondrial mass in pro-inflammatory differentiated macrophages. Results show that an increase in the mitochondrial mass of macrophages positively correlates with inflammatory cytokine generation in response to LPS. RNA-seq analysis revealed that LPS promotes signal transducers and activators of transcription 2 (Stat2) and dynamin-related protein 1 (Drp1) expression, which are enriched in positive mitochondrial fission regulation. Meanwhile, knockdown or pharmacological inhibition of Drp1 blunts LPS-induced mitochondrial mass increase and pro-inflammatory differentiation. Moreover, Stat2 boosts Drp1 phosphorylation at serine 616, required for Drp1-mediated mitochondrial fission. LPS also causes Stat2-and Drp1-dependent biogenesis, which contributes to the generation of additional mitochondria. However, these mitochondria are profoundly remodeled, displaying fragmented morphology, loose cristae, reduced Δψm, and metabolic programming. Furthermore, these remodeled mitochondria shift their function from ATP synthesis to reactive oxygen species (ROS) production, which drives NFκB-dependent inflammatory cytokine transcription. Interestingly, an increase in mitochondrial mass with constitutively active phosphomimetic mutant of Drp1 (Drp1 S616E ) boosted pro-inflammatory response in macrophages without LPS stimulation. In vivo, we also demonstrated that Mdivi-1 administration inhibits LPS-induced macrophage pro-inflammatory differentiation. Importantly, we observed Stat2 phosphorylation and Drp1-dependent mitochondrial mass increase in macrophages isolated from LPS-challenged mice. In conclusion, we comprehensively demonstrate that a Stat2-Drp1 dependent mitochondrial mass increase is necessary for pro-inflammatory differentiation of macrophages. Therefore, targeting the Stat2-Drp1 axis may provide novel therapeutic approaches for treating infection and inflammatory diseases.
Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycemia. Although the clear mechanisms of DM and insulin resistance are still to be cleared, it has been well documented that reactive oxygen species (ROS) play a pivotal role in DM and multiple types of insulin resistance. For the past few years, natural substances have been shown to have the potential to treatment DM. Attention has been especially focused on plants rich in triterpenoids, which generally show antioxidant and antiglycation effect. In our previous studies, it was shown that oleanolic acid (OA), a natural triterpenoid and an aglycone of many saponins, is a potent antioxidant acting as not only a free radical-scavenger through direct chemical reactions but also as a biological molecule, which may enhance the antioxidant defenses. The present study aimed to investigate the potential antidiabetic effect of OA. Oleanolic acid showed a significant blood glucose-lowering and weight-losing effect in diabetic animals induced by streptozotocin (STZ). In the insulin resistant model, it was also shown that OA may promote insulin signal transduction and inhibit oxidative stress-induced hepatic insulin resistance and gluconeogenesis, in which process the phosphorylation of ERK and the protective effect on mitochondrial function may be involved. These findings may significantly better the understanding of the pharmacological actions of OA and advance therapeutic approaches to DM.
Polychlorinated biphenyls (PCB) is a major type of persistent organic pollutants (POPs) that act as endocrine-disrupting chemicals. In the current study, we examined the mechanism underlying the effect of PCB-153 on glucose and lipid metabolism in vivo and in vitro. We found that PCB-153 induced per se and worsened high fat diet (HFD)-resulted increase of blood glucose level and glucose and insulin intolerance. In addition, PCB-153 induced per se and worsened HFD-resulted increase of triglyceride content and adipose mass. Moreover, PCB-153 concentration-dependently inhibited insulin-dependent glucose uptake and lipid accumulation in cultured hepatocytes and adipocytes. PCB-153 induced the expression and nuclear translocation of p65 NF-κB and the expression of its downstream inflammatory markers, and worsened HFD-resulted increase of those inflammatory markers. Inhibition of NF-κB significantly suppressed PCB-153-induced inflammation, lipid accumulation and decrease of glucose uptake. PCB-153 induced oxidative stress and decreased hepatocyte nuclear factor 1b (HNF1b) and glutathione peroxidase 1 (GPx1) expression in vivo and in vitro. Overexpression of HNF1b increased GPx1 expression, decreased ROS level, decreased Srebp1, ACC and FAS expression, and inhibited PCB-153-resulted oxidative stress, NF-κB-mediated inflammation, and final glucose/lipid metabolic disorder. Our results suggest that dysregulation of HNF1b/ROS/NF-κB plays an important role in PCB-153-induced glucose/lipid metabolic disorder.
Abstract. Cervical cancer is one of the most malignant types of tumor and the fourth leading cause of cancer-associated mortality in females worldwide. High expression of brain cytoplasmic RNA 1 (BCYRN1) has been detected in various tumors. The present study aimed to investigate the effect of BCYRN1 in the viability and motility of cervical cancer, and the relevant mechanism. The results demonstrated that BCYRN1 was upregulated in cervical cancer tissues compared with normal tissues. Elevated levels of BCYRN1 were also detected in three human cervical cancer cell lines (SiHa, HeLa and CaSki) compared with non-cancerous ectocervical epithelial cell line (Ect1/E6E7). The expression of BCYRN1 was suppressed following transfection with small interfering RNA (siRNA) in HeLa cells. The silence of BCYRN1 significantly reduced cell viability and motility. Furthermore, microRNA (miR)-138 was predicted as a direct target of BCYRN1 and the expression of miR-138 was elevated in HeLa cells transfected with BCYRN1 siRNA. Subsequently, elevated levels of miR-138 were suppressed by transfection with miR-138 inhibitor in HeLa cells pretreated with BCYRN1 siRNA. The targeting association between BCYRN1 and miR-138 was supported by luciferase reporter assays. Additionally, BCYRN1 siRNA partially counteracted the effect of miR-138 inhibitor on promoting cell viability and mobility in HeLa cells. Finally, the in vivo experiment verified that BCYRN1 siRNA was able to prevent tumor growth, and reduced the expression of migration marker proteins metalloproteinase 2 and vascular endothelial cell growth factor, with enhanced expression levels of miR-138. These results suggest that lncRNA BCYRN1 promotes the proliferation and invasion of cervical cancer via targeting miR-138.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.