Sodium-ion batteries have recently attracted significant attention as an alternative to lithium-ion batteries because sodium sources do not present the geopolitical issues that lithium sources might. Although recent reports on cathode materials for sodium-ion batteries have demonstrated performances comparable to their lithium-ion counterparts, the major scientific challenge for a competitive sodium-ion battery technology is to develop viable anode materials. Here we show that a hybrid material made out of a few phosphorene layers sandwiched between graphene layers shows a specific capacity of 2,440 mA h g(-1) (calculated using the mass of phosphorus only) at a current density of 0.05 A g(-1) and an 83% capacity retention after 100 cycles while operating between 0 and 1.5 V. Using in situ transmission electron microscopy and ex situ X-ray diffraction techniques, we explain the large capacity of our anode through a dual mechanism of intercalation of sodium ions along the x axis of the phosphorene layers followed by the formation of a Na3P alloy. The presence of graphene layers in the hybrid material works as a mechanical backbone and an electrical highway, ensuring that a suitable elastic buffer space accommodates the anisotropic expansion of phosphorene layers along the y and z axial directions for stable cycling operation.
The ability to detect light over a broad spectral range is central for practical optoelectronic applications, and has been successfully demonstrated with photodetectors of two-dimensional layered crystals such as graphene and MoS 2 . However, polarization sensitivity within such a photodetector remains elusive. Here we demonstrate a linear-dichroic broadband photodetector with layered black phosphorus transistors, using the strong intrinsic linear dichroism arising from the in-plane optical anisotropy with respect to the atom-buckled direction, which is polarization sensitive over a broad bandwidth from about 400 nm to 3750 nm. Especially, a perpendicular built-in electric field induced by gating in the transistor geometry can spatially separate the photo-generated electrons and holes in the channel, effectively reducing their recombination rate, and thus enhancing the performance for linear dichroism photodetection. This provides practical functionality using anisotropic layered black phosphorus, thereby enabling novel optical and optoelectronic device applications. Corresponding author: hyhwang@stanford.edu, yicui@stanford.edu. 2Confined electronic systems in layered two-dimensional (2D) crystals are host to many emerging electronic, spintronic and photonic phenomena, 1, 2, 3 including quantum Hall and Dirac electrons in graphene 4, 5, 6 and topological surface states in topological insulators 7, 8 . Experimentally identifying new functionalities of two-dimensional materials is a challenging and rewarding frontier, enabled by recent advances in materials and device fabrication. One example is the valley polarization control using circularly polarized light in the non-centrosymmetric MoS 2 monolayer and resulting potential valleytronics applications. 9, 10,11 Other examples include recent demonstrations of novel electronic and optoelectronic applications of the well-known layered material black phosphorus (BP), such as high-mobility field effect transistors and linear-polarization dependent optical absorption. 12,13,14 Therefore, further discovering new properties and functionalities utilizing known layered materials is of practical importance and great current interest. 14,15,16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 As a potential functionality for layered 2D materials, linear dichroism (LD) is an electromagnetic spectroscopy probing different absorption of light polarized parallel or perpendicular to an orientation axis. It directly depends on the conformation and orientation of material/device structures, where they are either intrinsically oriented in an anisotropic crystal structure 27, 28 or extrinsically oriented in anisotropic device patterns 29, 30 . Compared to the hexagonal in-plane lattice in other 2D materials such as graphene and MoS 2 , which are insensitive to the linear polarization of incident light, the layered BP crystal with a rectangular in-plane lattice has a highly-anisotropic structure along the x and y directions (defined in Fig. 1a), where every two rows of P atoms alternatel...
Metallic lithium is a promising anode candidate for future high-energy-density lithium batteries. It is a light-weight material, and has the highest theoretical capacity (3,860 mAh g(-1)) and the lowest electrochemical potential of all candidates. There are, however, at least three major hurdles before lithium metal anodes can become a viable technology: uneven and dendritic lithium deposition, unstable solid electrolyte interphase and almost infinite relative dimension change during cycling. Previous research has tackled the first two issues, but the last is still mostly unsolved. Here we report a composite lithium metal anode that exhibits low dimension variation (∼20%) during cycling and good mechanical flexibility. The anode is composed of 7 wt% 'lithiophilic' layered reduced graphene oxide with nanoscale gaps that can host metallic lithium. The anode retains up to ∼3,390 mAh g(-1) of capacity, exhibits low overpotential (∼80 mV at 3 mA cm(-2)) and a flat voltage profile in a carbonate electrolyte. A full-cell battery with a LiCoO2 cathode shows good rate capability and flat voltage profiles.
Polysulfide binding and trapping to prevent dissolution into the electrolyte by a variety of materials has been well studied in Li−S batteries. Here we discover that some of those materials can play an important role as an activation catalyst to facilitate oxidation of the discharge product, Li 2 S, back to the charge product, sulfur. Combining theoretical calculations and experimental design, we select a series of metal sulfides as a model system to identify the key parameters in determining the energy barrier for Li 2 S oxidation and polysulfide adsorption. We demonstrate that the Li 2 S decomposition energy barrier is associated with the binding between isolated Li ions and the sulfur in sulfides; this is the main reason that sulfide materials can induce lower overpotential compared with commonly used carbon materials. Fundamental understanding of this reaction process is a crucial step toward rational design and screening of materials to achieve high reversible capacity and long cycle life in Li−S batteries. T he ever-increasing demand for energy storage devices with high energy density, low material cost, and long cycle life has driven the development of new battery systems beyond the currently dominant lithium ion batteries (LIBs) (1). Among alternative battery chemistries, lithium−sulfur (Li−S) batteries have attracted remarkable attention due to their high theoretical energy density of 2,600 watt hours per kilogram, 5 times higher than those of state-of-the-art LIBs (2-4). In addition, sulfur, as a byproduct of the petroleum refining process, is naturally abundant, inexpensive, and environmentally friendly (5). However, the practical application of Li−S batteries is still plagued with numerous challenges. For example, the insulating nature of sulfur and discharge products Li 2 S/Li 2 S 2 leads to low active material utilization. In addition, the easy dissolution of lithium polysulfides (LiPSs) into the electrolyte causes LiPSs shuttling between cathode and anode and uncontrollable deposition of sulfide species on the lithium metal anode, inducing fast capacity fading and low coulombic efficiency (2, 6).Tremendous efforts have been taken to circumvent these concerns, with the nanostructuring of electrodes as one of the most effective approaches to overcoming the issues facing highcapacity electrode materials (2, 7). For example, the integration of nanostructured carbon materials with sulfur is one of the primary strategies for improving the electrical conductivity of the composites and suppression of polysulfide shuttling through physical confinement (8-14). However, it was first recognized by Zheng et al. (11) that the weak interaction between nonpolar carbon-based materials and polar LiPSs/Li 2 S species leads to weak confinement and easy detachment of LiPSs from the carbon surface, with further diffusion into the electrolyte causing capacity decay and poor rate performance. Therefore, the introduction of heteroatoms into carbonaceous materials (such as nitrogen, oxygen, boron, phosphorous, sulfur, or ...
Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in glymes (mono-, di-, and tetraglyme), can enable highly reversible and nondendritic plating–stripping of sodium metal anodes at room temperature. High average Coulombic efficiencies of 99.9% were achieved over 300 plating–stripping cycles at 0.5 mA cm–2. The long-term reversibility was found to arise from the formation of a uniform, inorganic solid electrolyte interphase made of sodium oxide and sodium fluoride, which is highly impermeable to electrolyte solvent and conducive to nondendritic growth. As a proof of concept, we also demonstrate a room-temperature sodium–sulfur battery using this class of electrolytes, paving the way for the development of next-generation, sodium-based energy storage technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.