Although there are a number of social networking services that specifically target scholars, little has been published about the actual practices and the usage of these so‐called academic social networking services (ASNSs). To fill this gap, we explore the populations of academics who engage in social activities using an ASNS; as an indicator of further engagement, we also determine their various motivations for joining a group in ASNSs. Using groups and their members in Mendeley as the platform for our case study, we obtained 146 participant responses from our online survey about users' common activities, usage habits, and motivations for joining groups. Our results show that (a) participants did not engage with social‐based features as frequently and actively as they engaged with research‐based features, and (b) users who joined more groups seemed to have a stronger motivation to increase their professional visibility and to contribute the research articles that they had read to the group reading list. Our results generate interesting insights into Mendeley's user populations, their activities, and their motivations relative to the social features of Mendeley. We also argue that further design of ASNSs is needed to take greater account of disciplinary differences in scholarly communication and to establish incentive mechanisms for encouraging user participation.
Voice-activated intelligent assistants, such as Siri, Google Now, and Cortana, are prevalent on mobile devices. However, it is challenging to evaluate them due to the varied and evolving number of tasks supported, e.g., voice command, web search, and chat. Since each task may have its own procedure and a unique form of correct answers, it is expensive to evaluate each task individually. This paper is the first attempt to solve this challenge. We develop consistent and automatic approaches that can evaluate different tasks in voice-activated intelligent assistants. We use implicit feedback from users to predict whether users are satisfied with the intelligent assistant as well as its components, i.e., speech recognition and intent classification. Using this approach, we can potentially evaluate and compare different tasks within and across intelligent assistants according to the predicted user satisfaction rates. Our approach is characterized by an automatic scheme of categorizing user-system interaction into task-independent dialog actions, e.g., the user is commanding, selecting, or confirming an action. We use the action sequence in a session to predict user satisfaction and the quality of speech recognition and intent classification. We also incorporate other features to further improve our approach, including features derived from previous work on web search satisfaction prediction, and those utilizing acoustic characteristics of voice requests. We evaluate our approach using data collected from a user study. Results show our approach can accurately identify satisfactory and unsatisfactory sessions.
Understanding and estimating satisfaction with search engines is an important aspect of evaluating retrieval performance. Research to date has modeled and predicted search satisfaction on a binary scale, i.e., the searchers are either satisfied or dissatisfied with their search outcome. However, users' search experience is a complex construct and there are different degrees of satisfaction. As such, binary classification of satisfaction may be limiting. To the best of our knowledge, we are the first to study the problem of understanding and predicting graded (multi-level) search satisfaction. We examine sessions mined from search engine logs, where searcher satisfaction was also assessed on multi-point scale by human annotators. Leveraging these search log data, we observe rich and nonmonotonous changes in search behavior in sessions with different degrees of satisfaction. The findings suggest that we should predict finer-grained satisfaction levels. To address this issue, we model search satisfaction using features indicating search outcome, search effort, and changes in both outcome and effort during a session. We show that our approach can predict subtle changes in search satisfaction more accurately than state-of-the-art methods, affording greater insight into search satisfaction. The strong performance of our models has implications for search providers seeking to accurately measure satisfaction with their services.
The emergence of the iSchool movement and the establishment of iSchools have helped to reshape the landscape of the library and information science (LIS) discipline. In this article, based on a set of research questions focusing around the research and education efforts of about 25 iSchools, we performed a study using both quantitative and qualitative methods on publically available data obtained from the web. Our results show that iSchools share the same vision and mission of working on relationships between information, people and technology, and have established themselves as the appropriate institutions for researchers from diverse subject areas to study this interdisciplinary integration. Overall, we are seeing an emerging iSchool identity and a defining iField, but there are still many important developments to make.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.