The performance of adversarial dialogue generation models relies on the quality of the reward signal produced by the discriminator. The reward signal from a poor discriminator can be very sparse and unstable, which may lead the generator to fall into a local optimum or to produce nonsense replies. To alleviate the first problem, we first extend a recently proposed adversarial dialogue generation method to an adversarial imitation learning solution. Then, in the framework of adversarial inverse reinforcement learning, we propose a new reward model for dialogue generation that can provide a more accurate and precise reward signal for generator training. We evaluate the performance of the resulting model with automatic metrics and human evaluations in two annotation settings. Our experimental results demonstrate that our model can generate more high-quality responses and achieve higher overall performance than the state-of-the-art.
Web search queries for which there are no clicks are referred to as abandoned queries and are usually considered as leading to user dissatisfaction. However, there are many cases where a user may not click on any search result page (SERP) but still be satisfied. This scenario is referred to as good abandonment and presents a challenge for most approaches measuring search satisfaction, which are usually based on clicks and dwell time. The problem is exacerbated further on mobile devices where search providers try to increase the likelihood of users being satisfied directly by the SERP. This paper proposes a solution to this problem using gesture interactions, such as reading times and touch actions, as signals for differentiating between good and bad abandonment. These signals go beyond clicks and characterize user behavior in cases where clicks are not needed to achieve satisfaction. We study different good abandonment scenarios and investigate the different elements on a SERP that may lead to good abandonment. We also present an analysis of the correlation between user gesture features and satisfaction. Finally, we use this analysis to build models to automatically identify good abandonment in mobile search achieving an accuracy of 75%, which is significantly better than considering query and session signals alone. Our findings have implications for the study and application of user satisfaction in search systems.
The new user coldstart problem arises when a recommender system does not yet have any information about a user. A common solution to it is to generate a profile by asking the user to rate a number of items. Which items are selected determines the quality of the recommendations made, and thus has been studied extensively. We propose a new elicitation method to generate a static preference questionnaire (SPQ) that poses relative preference questions to the user. Using a latent factor model, we show that SPQ improves personalized recommendations by choosing a minimal and diverse set of questions. We are the first to rigorously prove which optimization task should be solved to select each question in static questionnaires. Our theoretical results are confirmed by extensive experimentation. We test the performance of SPQ on two real-world datasets, under two experimental conditions: simulated, when users behave according to a latent factor model (LFM), and real, in which only real user judgments are revealed as the system asks questions. We show that SPQ reduces the necessary length of a questionnaire by up to a factor of three compared to state-ofthe-art preference elicitation methods. Moreover, solving the right optimization task, SPQ also performs better than baselines with dynamically generated questions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.