Objective
The aim of this study is to evaluate the efficacy of the strain Paenibacillus polymyxa HX-140, isolated from the rhizosphere soil of rape, to control Fusarium wilt of cucumber seedlings caused by Fusarium oxysporum f. sp. cucumerinum.
Results
Strain HX-140 was able to produce protease, cellulase, β-1,3-glucanase and antifungal volatile organic compounds. An in vitro dual culture test showed that strain HX-140 exhibited broad spectrum antifungal activity against soil-borne plant pathogenic fungi. Strain HX-140 also reduced the infection of Fusarium wilt of cucumber seedlings by 55.6% in a greenhouse pot experiment. A field plot experiment confirmed the biocontrol effects and further revealed that antifungal activity was positively correlated with inoculum size by the root-irrigation method. Here, inoculums at 106 107 and 108 cfu/mL of HX-140 bacterial suspension reduced the incidence of Fusarium wilt of cucumber seedling by 19.5, 41.1, and 50.9%, respectively.
Conclusions
Taken together, our results suggest that P. polymyxa HX-140 has significant potential in the control of Fusarium wilt and possibly other fungal diseases of cucumber.
In this study, 76 bacterial strains were isolated from the rhizosphere soil of pepper. Of these, 23 bacterial isolates capable of inhibiting Phytophthora capsici growth were selected. Among the antagonistic bacteria, one strain, IBFCBF‐1 showed the strongest antagonistic activity, and was identified as Bacillus amyloliquefaciens based on the results of 16S rRNA gene sequence analysis, physiological and biochemical testing, and morphological characteristics. When tested with a dual‐culture method and with laboratory greenhouse studies, the strain IBFCBF‐1 was found to be a potential biocontrol agent for controlling the plant pathogen, P. capsici. Moreover, it showed high efficiency and broad‐spectrum antifungal properties in vitro. Under greenhouse conditions, IBFCBF‐1 could significantly promote the growth of pepper seedlings, and was able to solubilize phosphate, and produce indole acetic acid (IAA) and ammonia. This study clearly demonstrated that IBFCBF‐1 is a potential candidate exhibiting phytophthora blight‐suppressive and plant growth‐promoting effects on pepper.
To improve essential oil quality, especially to reserve the thermal instability of compounds, supercritical CO2 extraction (SFE) was applied to recover essential oil from Cymbopogon citronella leaves. A response surface methodology was applied to optimize the extraction process. The highest essential oil yield was predicted at extraction time 120 min, extraction pressure 25 MPa, extraction temperature 35°C, and CO2 flow 18 L/h for the SFE processing. Under these experimental conditions, the mean essential oil yield is 4.40%. In addition, the chemical compositions of SFE were compared with those obtained by hydrodistillation extraction (HD). There were 41 compounds obtained of SFE, while 35 compounds of HD. Alcohols and aldehydes were the main compositions in the essential oils. Furthermore, the antioxidant activities and antimicrobial of essential oils obtained by HD and the evaluated condition of SFE were compared. Results showed that the antioxidant activities of SFE oil are better than those of HD. Minimum inhibitory concentrations (MICs) were determined by the microdilution method. Essential oil obtained from SFE and HD exhibited a significant antimicrobial activity against all tested microorganisms. It is confirmed that the SFE method can be an alternative processing method to extract essential oils from Cymbopogon citronella leaves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.