Abstract. We present a suite of nine scenarios of future emissions trajectories of
anthropogenic sources, a key deliverable of the ScenarioMIP experiment within
CMIP6. Integrated assessment model results for 14 different emissions species
and 13 emissions sectors are provided for each scenario with consistent
transitions from the historical data used in CMIP6 to future trajectories using
automated harmonization before being downscaled to provide higher emissions
source spatial detail. We find that the scenarios span a wide range of
end-of-century radiative forcing values, thus making this set of scenarios ideal
for exploring a variety of warming pathways. The set of scenarios is bounded on
the low end by a 1.9 W m−2 scenario, ideal for analyzing a world with
end-of-century temperatures well below 2 ∘C, and on the high end by a 8.5 W m−2
scenario, resulting in an increase in warming of nearly 5 ∘C over pre-industrial
levels. Between these two extremes, scenarios are provided such that differences
between forcing outcomes provide statistically significant regional temperature
outcomes to maximize their usefulness for downstream experiments within CMIP6.
A wide range of scenario data products are provided for the CMIP6 scientific
community including global, regional, and gridded emissions datasets.
Abstract. We present a suite of nine scenarios of future emissions trajectories of anthropogenic sources, a key deliverable of the ScenarioMIP experiment within CMIP6. Integrated Assessment Model results for 14 different emissions species and 13 emissions sectors are provided for each scenario with consistent transitions from the historical data used in CMIP6 to future trajectories using automated harmonization before being downscaled to provide higher emission source spatial detail. We find that the scenarios span a wide range of end-of-century radiative forcing values, thus making this set of scenarios ideal for exploring a variety of warming pathways. The set of scenarios are bounded on the low end by a 1.9 W m-2 scenario, ideal for analyzing a world with end-of-century temperatures well below 2 °C, and on the high-end by a 8.5 W m-2 scenario, resulting in an increase in warming of nearly 5 °C over pre-industrial levels. Between these two extremes, scenarios are provided such that differences between forcing outcomes provide statistically significant regional temperature outcomes to maximize their usefulness for downstream experiments within CMIP6. A wide range of scenario data products are provided for the CMIP6 scientific community including global, regional, and gridded emissions datasets.
In the 2015 Paris Agreement, nations worldwide pledged emissions reductions (Nationally Determined Contributions—NDCs) to avert the threat of climate change, and agreed to periodically review these pledges to strengthen their level of ambition. Previous studies have analyzed NDCs largely in terms of their implied contribution to limit global warming, their implications on the energy sector or on mitigation costs. Nevertheless, a gap in the literature exists regarding the understanding of implications of the NDCs on countries’ Energy-Water-Land nexus resource systems. The present paper explores this angle within the regional context of Latin America by employing the Global Change Assessment Model, a state-of-the-art integrated assessment model capable of representing key system-wide interactions among nexus sectors and mitigation policies. By focusing on Brazil, Mexico, Argentina and Colombia, we stress potential implications on national-level water demands depending on countries’ strategies to enforce energy-related emissions reductions and their interplays with the land sector. Despite the differential implications of the Paris pledges on each country, increased water demands for crop and biomass irrigation and for electricity generation stand out as potential trade-offs that may emerge under the NDC policy. Hence, this study underscores the need of considering a nexus resource planning framework (known as “Nexus Approach”) in the forthcoming NDCs updating cycles as a mean to contribute toward sustainable development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.