This study is a prospective analysis of the outcome of subpectoral breast augmentation. Forty-seven patients undergoing breast augmentation were studied. They were assessed for pectoralis muscle function, breast sensation, and body image before and after subpectoral breast augmentation with saline implants. The patients were evaluated as follows: Pectoralis function was determined by measuring maximal voluntary isometric force. Sensation was evaluated by two means: vibration and pressure. The patient's body image was assessed using the Multidimensional Body-Self Relations Questionnaire. Results indicated a significant change in breast sensation at 3 months postoperatively but not at 6 months. Pectoralis muscle function did not significantly change during the study period. Body image was significantly improved at both postoperative measuring periods. The authors conclude that breast augmentation results in improved body image with negligible effect on muscle or nerve function.
Vascular endothelial growth factor (VEGF), a potent endothelial mitogen, is secreted in ischemic tissue and plays a pivotal role in angiogenesis. We studied whether VEGF administered to a rat muscle flap at the time of ischemia induction would increase microcirculatory flow to the flap. The cremaster muscle flap was isolated on its neurovascular pedicle. Ischemia was induced by clamping the vascular pedicle, and 0.2 ml of either VEGF (0.1 microg) or vehicle (phosphate-buffered saline) was immediately infused into the muscle. After 4 or 6 hours, the clamps were released, and the cremaster was placed in a pocket in the medial thigh for 24 hours. The muscle was then dissected, and microcirculatory measurements were made under intravital microscopy. Six animals were used in each of the four groups. All flaps exposed to 6 hours of ischemia, the duration considered to be critical ischemia, had no significant microcirculatory flow, regardless of treatment with VEGF. In the 4-hour ischemia group, or subcritical ischemia group, red blood cell velocity in arterioles was 14 mm/sec in muscles treated with VEGF and 9 mm/sec in controls (p = 0.02), and capillary flow was 7 per high-power field in muscles treated with VEGF versus 2 per high-power field in controls (p = 0.0005). Thus, VEGF did not alter microcirculatory flow in a muscle flap exposed to critical ischemia, but it did enhance flow to a flap exposed to subcritical ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.