Ingesting 23 g of protein with 5 g of added leucine achieved near-maximal FSR after endurance exercise, an effect unlikely attributable to mTORC1-S6K-rpS6 signaling, insulin, or amino acids. Translating the effects of protein-leucine quantity on protein synthesis to optimizing adaptation and performance requires further research.
Enhanced high-intensity endurance performance with a 0.8 ratio fructose-maltodextrin-glucose drink is characterized by higher exogenous-CHO oxidation efficiency and reduced endogenous-CHO oxidation. The gut-hepatic or other physiological site responsible requires further research.
Rowlands DS, Nelson AR, Raymond F, Metairon S, Mansourian R, Clarke J, Stellingwerff T, Phillips SM. Protein-leucine ingestion activates a regenerative inflammo-myogenic transcriptome in skeletal muscle following intense endurance exercise.
Postexercise protein-leucine supplementation saturates BCAA metabolism and attenuates tissue damage, but effects on subsequent intense endurance performance may be inconsequential under conditions of positive daily nitrogen balance.
Whey protein and leucine ingestion following exercise increases muscle protein synthesis and could influence neutrophil function during recovery from prolonged intense exercise. We examined the effects of whey protein and leucine ingestion post-exercise on neutrophil function and immunomodulators during a period of intense cycling. In a randomized double-blind crossover, 12 male cyclists ingested protein/leucine/carbohydrate/fat (LEUPRO 20/7.5/89/22 g h(-1), respectively) or isocaloric carbohydrate/fat control (CON 119/22 g h(-1)) beverages for 1-3 h post-exercise during 6 days of high-intensity training. Blood was taken pre- and post-exercise on days 1, 2, 4 and 6 for phorbol myristate acetate (PMA)-stimulated neutrophil superoxide (O2 (-)) production, immune cell counts, amino acid and lipid metabolism via metabolomics, hormones (cortisol, testosterone) and cytokines (interleukin-6, interleukin-10). During recovery on day 1, LEUPRO ingestion increased mean concentrations of plasma amino acids (glycine, arginine, glutamine, leucine) and myristic acid metabolites (acylcarnitines C14, myristoylcarnitine; and C14:1-OH, hydroxymyristoleylcarnitine) with neutrophil priming capacity, and reduced neutrophil O2 production (15-17 mmol O2 (-) cell(-1) ± 90 % confidence limits 20 mmol O2 (-) cell(-1)). On day 2, LEUPRO increased pre-exercise plasma volume (6.6 ± 3.8 %) but haematological effects were trivial. LEUPRO supplementation did not substantially alter neutrophil elastase, testosterone, or cytokine concentrations. By day 6, however, LEUPRO reduced pre-exercise cortisol 21 % (±15 %) and acylcarnitine C16 (palmitoylcarnitine) during exercise, and increased post-exercise neutrophil O2 (-) (33 ± 20 mmol O2 (-) cell(-1)), relative to control. Altered plasma amino acid and acylcarnitine concentrations with protein-leucine feeding might partly explain the acute post-exercise reduction in neutrophil function and increased exercise-stimulated neutrophil oxidative burst on day 6, which could impact neutrophil-dependent processes during recovery from intense training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.