Executive SummaryUranium (U) is an important risk-driving contaminant at the Hanford Site. Over 200,000 kg have been released to the vadose zone over the course of site operations, and a number of vadose zone and groundwater plumes containing the uranyl cation [UO 2 2+ , U(VI)] have been identified. U is recognized to be of moderate-to-high mobility, conditions dependent. The site is currently making decisions on several of these plumes with long-lasting implications, and others are soon to come.Uranium is one of nature's most intriguing and chemically complex elements. The fate and transport of U(VI) has been studied over the long lifetime of the Hanford Site by various contractors, along with the Pacific Northwest National Laboratory (PNNL) and its collaborators. Significant research has more recently been contributed by the national scientific community with support from the U.S. Department of Energy's (DOE) Office of Science through its Environmental Remediation Sciences Division (ERSD). This report represents a first attempt to integrate these findings into a cohesive view of the subsurface geochemistry of U at the Hanford Site. The objective is to inform all interested Hanford parties about the in-ground inventory of U and its geochemical behavior. This report also comments on the prospects for the development of a robust generic model to more accurately forecast future U(VI) migration at different Hanford waste sites, along with further research necessary to reach this goal.To accomplish the report objectives, the environmental geochemistry of U at the Hanford Site is discussed in terms of both the vadose and saturated zone, to the extent that it is known. Hexavalent uranium [U(VI)] is the dominant valence form of U under the predominantly oxidizing subsurface conditions at the Hanford Site, and the researchers' analyses consequently emphasize this species. The nature and concentration of background U in Hanford subsurface sediments is identified to place contaminant U(VI) concentrations and behavior in perspective to the natural system. In-ground U-waste inventories are quantified and characterized with regard to source term, to the extent possible, and the most important sites from an inventory perspective are identified. The U-isotopic content of various waste streams are discussed from the perspective of waste-source tracking. The geochemical attenuation processes responsible for slowing the rate of subsurface U migration, relative to the transporting water front, are illustrated through careful consideration of both field characterization studies of existing U vadose-zone and groundwater plumes, and laboratory studies of derived contaminated and uncontaminated sediments. Both empirical and more mechanistic models of these attenuation processes are considered as well as the parameters that define attenuation magnitude. Attention is given to the behavior of contaminant U(VI) that has been in contact with Hanford sediments for extended periods (circa 10-50 years), as long contact imparts unique characte...
Outpatient stroke rehabilitation is often lengthy and expensive due to patients' lack of functional use of the impaired arm outside of the clinic caused by "learned non-use." Learned non-use is detrimental to stroke recovery, often resulting in chronic disability. To overcome learned non-use, a wearable "personal assistant" solution is proposed that employs ubiquitous cueing to stimulate patient use of the paretic arm while outside of therapy sessions. A pilot user study is presented that evaluated stroke survivors' tolerance and acceptance of cueing, and the usability of the proposed implementation.
SUMMARYIcitrap is a¯exible workshop-based training exercise that has been developed to examine and evaluate participatory approaches in project management. This article outlines the background and rationale for the commissioning of the Icitrap exercise and then describes the development and testing methodology used. The experiential nature of the exercise is the key to the ful®lment of its stated aim, which is to foster an understanding of participatory approaches towards project management by drawing out common problems, principles and points for action. Details of the ®nalized experiential training package, available in text-based and electronic formats, are presented. Copyright # 1999 John Wiley & Sons, Ltd.The early project process is dominated by engineers and economists, and preoccupations with infrastructure, budgets, schedules and quanti®cation. The way professionals and organisations think and operate biases the process against poor people. A new professionalism and a new paradigm start with people rather than things, and adaptive processes rather than with blueprints (Chambers, 1993).We will encourage participatory approaches which take into account the views and needs of the poor, and which tackle disparities between women and men throughout society (Department for International Development, 1997).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.