Abstract. The quasi-biennial oscillation (QBO), as the dominant mode in the equatorial stratosphere, modulates the dynamical circulation and the distribution of trace gases in the stratosphere. While the zonal mean QBO signals in stratospheric ozone have been relatively well documented, the zonal (longitudinal) differences in the QBO ozone signals have been less studied. Using satellite-based total column ozone (TCO) data from 1979 to 2020, zonal mean ozone data from 1984 to 2020, three-dimensional (3-D) ozone data from 2002 to 2020, and ERA5 reanalysis and model simulations from 1979 to 2020, we demonstrate that the influences of the QBO (using a QBO index at 20 hPa) on stratospheric ozone are zonally asymmetric. The global distribution of stratospheric ozone varies significantly during different QBO phases. During QBO westerly (QBOW) phases, the TCO and stratospheric ozone are anomalously high in the tropics, while in the subtropics they are anomalously low over most of the areas, especially during the winter–spring of the respective hemisphere. This confirms the results from previous studies. In the polar region, the TCO and stratospheric ozone (50–10 hPa) anomalies are seasonally dependent and zonally asymmetric. During boreal winter (December–February, DJF), positive anomalies of the TCO and stratospheric ozone are evident during QBOW over the regions from North America to the North Atlantic (120∘ W–30∘ E), while significant negative anomalies exist over other longitudes in the Arctic. In boreal autumn (September–November, SON), the TCO and stratospheric ozone are anomalously high from Greenland to Eurasia (60∘ W–120∘ E) but anomalously low in other regions over the Arctic. Weak positive TCO and stratospheric ozone anomalies exist over the South America sector (90∘ W–30∘ E) of the Antarctic, while negative anomalies of the TCO and stratospheric ozone are seen in other longitudes. The consistent features of TCO and stratospheric ozone anomalies indicate that the QBO signals in TCO are mainly determined by the stratospheric ozone variations. Analysis of meteorological conditions indicates that the QBO ozone perturbations are mainly caused by dynamical transport and also influenced by chemical reactions associated with the corresponding temperature changes. QBO affects the geopotential height and the polar vortex and subsequently the transport of ozone-rich air from lower latitudes to the polar region, which therefore influences the ozone concentrations over the polar region. The geopotential height anomalies associated with QBO (QBOW–QBOE) are zonally asymmetric with clear wave number 1 features, which indicates that QBO influences the polar vortex and stratospheric ozone mainly by modifying the wave number 1 activities.
Tropospheric ozone is an important atmospheric pollutant as well as an efficient greenhouse gas. Beijing is one of the cities with the most serious ozone pollution. However, long-term date of observed ozone in Beijing are limited. In this paper, we combine the measurements of the In-service Aircraft for a Global Observing System (IAGOS), ozonesonde observations as well as the recently available ozone monitoring network observations to produce a unique data record of surface ozone (at 14:00 Beijing time) in Beijing from 1995 to 2020. Using this merged dataset, we investigate the variability in surface ozone in Beijing on multiple timescales. The long-term change is primarily characterized by a sudden drop in 2011–2012 with an insignificant linear trend during the full period. Based on CAM-chem model simulations, meteorological factors played important roles in the 2011–2012 ozone drop. Before and after this sudden drop, ozone levels in Beijing increased significantly by 0.42 ± 0.27 ppbv year−1 before 2011 and 0.43 ± 0.41 ppbv year−1 after 2013. We also found a substantial increase in the amplitude of the ozone annual cycle in Beijing, which has not been documented in previous studies. This is consistent with ozone increases in summer and ozone decreases in winter. In addition, the results by the Ensemble Empirical Mode Decomposition (EEMD) analysis indicate significant interannual variations in ozone levels in Beijing with different time oscillation periods, which may be associated with natural variabilities and subsequent changes in meteorological conditions.
In summertime, eastern China experiences severe ozone pollution. Stratosphere-to-troposphere transport (STT), as the primary natural source of tropospheric ozone, may have a non-negligible contribution to ground-level ozone. Rossby wave breaking (RWB) is a leading mechanism that triggers STT, which can be categorized as anticyclonic wave breakings (AWBs) and cyclonic wave breakings (CWBs). This study uses an objective method to diagnose AWBs and CWBs and to investigate their influence on the surface ozone in eastern China using ground-based ozone observations, satellite ozone data from AIRS, a stratospheric ozone tracer simulated by CAM-chem, and meteorological fields from MERRA-2. The results indicate that AWBs occur mainly and frequently over northeast China, while CWBs occur mostly over the northern Sea of Japan. STTs triggered by AWBs mainly have sinking areas over the North China Plain, increasing the ground-level ozone concentrations by 5–10 ppbv in eastern China. The downwelling zones in the CWBs extend from Mongolia to the East China Sea, potentially causing an elevation of 5–10 ppbv of ozone in both central and eastern China. This study gives an overview of the impacts of AWBs and CWBs on surface ozone in eastern China and helps to improve our understanding of summertime ozone pollution in eastern China.
Abstract. The Quasi-Biennial Oscillation (QBO), as the dominant mode in the equatorial stratosphere, modulates the dynamical circulation as well as the distribution of trace gases in the stratosphere. While the zonal mean changes in stratospheric ozone associated with QBO have been relatively well documented, the zonal (longitudinal) differences of the ozone signals related to QBO have been less studied. Here we demonstrate that the influences of QBO on stratospheric ozone are zonally asymmetric. Based on a composite analysis using satellite data, ERA5 reanalysis and model simulations, we found that the global distribution of stratospheric ozone varies significantly during different QBO phases. During QBO westerly (QBOW) phases, the total ozone column (TCO) and stratospheric ozone are anomalously high in the tropics, while in the mid-latitudes they are anomalously low over most of the areas, especially during the winter-spring of the respective hemisphere. This confirms the results from previous studies. In the polar region, the TCO and stratospheric ozone (50–10 hPa) anomalies are seasonal dependent and zonally asymmetric: during boreal winter (DJF), positive anomalies of TCO and stratospheric ozone are evident during QBOW over the regions from Greenland to Eurasia (60º W–120º E) in the Arctic while significant negative anomalies exist over other longitudes; in boreal autumn (SON), TCO and stratospheric ozone are anomalously high in the eastern hemisphere, but anomalously low in the western hemisphere over the Arctic; significant positive stratospheric ozone anomalies exist over the South America and Atlantic sector (60º W–60º E) of the Antarctic while negative anomalies of TCO and stratospheric ozone are seen in other longitudes during its spring (SON). The consistent features of TCO and stratospheric ozone anomalies indicate that the QBO in TCO is mainly determined by the stratospheric ozone variations. Analysis of meteorological conditions indicates that ozone anomalies associated with QBO are negatively correlated with temperature changes, suggesting that the QBO in stratospheric ozone is mainly caused by dynamical transport rather than temperature. QBO affects the geopotential height and polar vortex strength and subsequently the transport of ozone-rich air from lower latitudes to the polar region, which therefore influences the ozone concentrations over the polar regions. The geopotential height anomalies are zonally asymmetric with clear wave-1 features, which indicates that QBO influences the polar vortex and stratospheric ozone mainly by modifying the wave number 1 activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.