: The infection and spread of pathogens (e.g., COVID-19) pose an enormous threat to the safety of human beings and animals all over the world. The rapid and accurate monitoring and determination of pathogens are of great significance to clinical diagnosis, food safety and environmental evaluation. In recent years, with the evolution of nanotechnology, nano-sized graphene and graphene derivatives have been frequently introduced into the construction of biosensors due to their unique physicochemical properties and biocompatibility. The combination of biomolecules with specific recognition capabilities and graphene materials provides a promising strategy to construct more stable and sensitive biosensors for the detection of pathogens. This review tracks the development of graphene biosensors for the detection of bacterial and viral pathogens, mainly including the preparation of graphene biosensors and their working mechanism. The challenges involved in this field have been discussed, and the perspective for further development has been put forward, aiming to promote the development of pathogens sensing and the contribution to epidemic prevention.
The light-emitting electrochemical cell (LEC) exhibits capacity for efficient charge injection from two air-stable electrodes into a single-layer active material, which is commonly interpreted as implying that the LEC operation is independent of the electrode selection. Here, we demonstrate that this is far from the truth and that the electrode selection instead has a strong influence on the LEC performance. We systematically investigate 13 different materials for the positive anode and negative cathode in a common LEC configuration with the conjugated polymer Super Yellow as the electroactive emitter and find that Ca, Mn, Ag, Al, Cu, indium tin oxide (ITO), and Au function as the LEC cathode, whereas ITO and Ni can operate as the LEC anode. Importantly, we demonstrate that the electrochemical stability of the electrode is paramount and that particularly electrochemical oxidation of the anode can prohibit the functional LEC operation. We finally report that it appears preferable to design the device so that the heights of the injection barriers at the two electrode/active material interfaces are balanced in order to mitigate electrode-induced quenching of the light emission. As such, this study has expanded the set of air-stable electrode materials available for functional LEC operation and also established a procedure for the evaluation and design of future efficient electrode materials.
A series of new 2,7-dioctyl-substituted dibenzo[a,c]phenazine (BPz) derivatives were designed and synthesized as electron-deficient units, which were copolymerized with an electron-rich indacenodithiophene (IDT) to construct narrow-bandgap copolymers PIDT−OHBPz, PIDT−OFBPz, and PIDT−OBPQ via Stille polycondensation. The 2,7-dioctyl substituents enhanced solubility and offered a new approach for developing various BPz derivatives. All copolymers showed high hole mobilities above 0.01 cm 2 V −1 s −1 as measured by field effect transistors. The best performance of polymer solar cell was achieved based on PIDT−OFBPz with inverted device structure of ITO/ZnO/PFN/polymer:PC 61 BM/MoO 3 /Al, which showed an opencircuit voltage (V oc ) of 0.97 V, a short-circuit current (J sc ) of 8.96 mA/cm 2 , and a fill factor (FF) of 58.99%, leading to a high power conversion efficiency (PCE) of 5.13%. These results indicate that 2,7-alkyl-substituted BPz derivatives can be used as an excellent electron-deficient building block for the construction of high-performance organic electronic materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.