The occlusion of dentinal tubules is an effective method to alleviate the symptoms of dentin hypersensitivity. In this paper, we successfully modified nano-hydroxyapatite (n-HAP) with carboxyl-terminated polyamidoamine dendrimers by an aqueous-based chemical method and verified by fourier transform infrared spectroscopy (FTIR) and transmission electron microscope (TEM). Then the demineralization dentin discs were randomly divided into 4 groups, corresponding to subsequent brushing experiments: deionized water and kept in artificial saliva (AS), dendrimer-functionalized n-HAP and stored in AS, n-HAP and saved in AS, dendrimer-functionalized n-HAP and stored in deionized water. After 7 days of simulated brushing, dentin discs followed the in vitro characterization using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy and microhardness test. These data suggested that dendrimer-functionalized n-HAP could crosslink with collagen fibers and resulted in effective dentinal tubule occlusion. Moreover, the new material can induce the HAP formation with the help of superficial carboxyl and fill the spaces in dentinal tubules furtherly. The microhardness of dendrimer-functionalized n-HAP-treated specimens was significantly higher than others. In summary, dendrimer-functionalized n-HAP can be a new therapeutic material for the treatment of dentin hypersensitivity.
It is crucial to emphasize the biomineralization therapeutic method to repair etched dentin in clinic. Non-collagenous proteins (NCPs) play critical role in the biomineralization of dentine. In this paper, we synthesized the phosphate-terminated polyamidoamine dendrimer (PAMAM-PO3H2) by one-step modification successfully and examined by Fourier-transform infrared spectroscopy (FT-IR) and 1 H-nuclear Magnetic Resonance ( 1 H-NMR) to characterize the structure of PAMAM-PO3H2. PAMAM-PO3H2 and carboxylterminated dendrimers (PAMAM-COOH) were applied as the dual biomimetic analogs of NCPs. Through the characterization of FT-IR, field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), the surfaces of human dentin were covered with regenerated crystals and the dentinal tubules were occluded by PAMAM-PO3H2 and PAMAM-COOH. In summary, the combination of PAMAM-PO3H2 and PAMAM-COOH may be another feasible therapeutic method for the treatment of dentin caries and dentin hypersensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.