As broad-spectrum pesticides, organophosphates (OPs) are widely used in agriculture all over the world. However, due to their neurotoxicity in humans and their increasing occurrence in the environment, there is growing interest in their sensitive and selective detection. This paper reports a new cost-effective plant esterase-chitosan/gold nanoparticles-graphene nanosheet (PLaE-CS/AuNPs-GNs) biosensor for the sensitive detection of methyl parathion and malathion. Highly pure plant esterase is produced from plants at low cost and shares the same inhibition mechanism with OPs as acetylcholinesterase, and then it was used to prepare PLaE-CS/AuNPs-GNs nanocomposites, which were systematically characterized using SEM, TEM, and UV-vis. The PLaE-CS/AuNPs-GNs composite-based biosensor measured as low as 50 ppt (0.19 nM) of methyl parathion and 0.5 ppb (1.51 nM) of malathion (S/N = 3) with a calibration curve up to 200 ppb (760 nM) and 500 ppb (1513.5 nM) for methyl parathion and malathion, respectively. There is also no interference observed from most of common species such as metal ions, inorganic ions, glucose, and citric acid. In addition, its applicability to OPs-contaminated real samples (carrot and apple) was also demonstrated with excellent response recovery. The developed simple, sensitive, and reliable PLaE-CS/AuNPs-GNs composite-based biosensor holds great potential in OPs detection for food and environmental safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.