The overall objective of this research was to explore ageing consumers' attitudes towards currently available food packaging in New Zealand. Ninety-nine individuals (over the age of 60) in New Zealand were surveyed to determine packaging attributes of importance when selecting food products. This was followed with a focus group of 13 individuals to discuss improvements to packaging. Frequencies of responses were calculated for the survey data, and crosstabulations and chi-square tests were used to determine the relationships between variables. Price, safety, size of packaging and ability to recycle were of most importance to these individuals. Problems encountered with food packaging included tight lids, small printing and spillage during opening. Of the types of package closures investigated, opening of packages, rather than resealing of packages proved problematic. Fifty percent or more of respondents indicated that peelable induction seals, lug closures and continuous thread closures were problems that occurred 'very often' or 'frequently'. Sixty-one percent of the participants surveyed had asked for assistance opening some types of packages, and this was particularly prevalent among individuals who had weakness in their arms, hands or wrists. Changes to package closures suggested during the focus groups included increasing the size of twist off caps, larger ring pulls on aluminium cans and including more sliding resealable closures on foil and plastic packaging. Larger printing on labels was also recommended by the participants.
Plant research and natural product detection are of sustainable interests. Benefited by direct detection with no sample preparation, sinapine, a bioactive chemical usually found in various seeds of Brassica plants, has been unambiguously detected in radish taproot (Raphanus sativus) tissue using a liquid-assisted surface desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS). A methanol aqueous solution (1:1) was nebulized by a nitrogen sheath gas toward the corona discharge, resulting in charged ambient small droplets, which affected the radish tissue for desorption/ionization of analytes on the tissue surface. Thus, sinapine was directly detected and identified by tandem DAPCI-MS experiments without sample pretreatment. The typical relative standard deviation (RSD) of this method for sinapine detection was 5-8% for six measurements (S/N=3). The dynamic response range was 10(-12)-10(-7) g/cm2 for sinapine on the radish skin surface. The discovery of sinapine in radish taproot was validated by using HPLC-UV methods. The data demonstrated that DAPCI assisted by solvent enhanced the overall efficiency of the desorption/ionization process, enabling sensitive detection of bioactive compounds in plant tissue.
Aerosol drugs dominate a significant share of pharmaceutical preparations on the market. A novel sensitive method utilizing nano extractive electrospray ionization mass spectrometry (nanoEESI-MS) has been developed for the rapid analysis of aerosol drug samples with quantitative information. Without any sample pretreatment, aerosol drugs were manually sprayed into the primary ion plume created by a nano electrospray emitter for direct ionization under ambient conditions. The analyte ions of interest were guided into an ion trap mass spectrometer for tandem mass analysis. The active ingredients of various aerosol drugs, such as econazole nitrate, beclomethasone dipropionate, binary mixture of methyl salicylate and diphenhydramine, terbutaline, and salbutamol, were rapidly detected using nanoEESI-MS. A single sample analysis could be completed within 1.2 s. Tandem mass spectrometry was used to confirm the identification of important compounds in each aerosol drug sample. Reasonable relative standard deviation (RSD = 6.39%, n = 13) and acceptable sensitivity (10 ppt, 100 muL) were found for the salbutamol aerosol sample, which suggests that nanoEESI-MS has the quantitative capacity for analyzing complex pharmaceutical samples. This method was further extended to study the thermal decomposition process of salbutamol, showing that the degradation kinetics of salbutamol can be conveniently tracked. Our data demonstrate that nanoEESI tandem mass spectrometry is a fast and sensitive technique for the analysis of aerosol drug preparations, showing promising applications in pharmacology studies and in situ analysis of aerosol drugs on the market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.