Background and Purpose: When the coronavirus disease 2019 (COVID-19) outbreak became paramount, medical care for other devastating diseases was negatively impacted. In this study, we investigated the impact of the COVID-19 outbreak on stroke care across China. Methods: Data from the Big Data Observatory Platform for Stroke of China consisting of 280 hospitals across China demonstrated a significant drop in the number of cases of thrombolysis and thrombectomy. We designed a survey to investigate the major changes during the COVID-19 outbreak and potential causes of these changes. The survey was distributed to the leaders of stroke centers in these 280 hospitals. Results: From the data of Big Data Observatory Platform for Stroke of China, the total number of thrombolysis and thrombectomy cases dropped 26.7% ( P <0.0001) and 25.3% ( P <0.0001), respectively, in February 2020 as compared with February 2019. We retrieved 227 valid complete datasets from the 280 stroke centers. Nearly 50% of these hospitals were designated hospitals for COVID-19. The capacity for stroke care was reduced in the majority of the hospitals. Most of the stroke centers stopped or reduced their efforts in stroke education for the public. Hospital admissions related to stroke dropped ≈40%; thrombolysis and thrombectomy cases dropped ≈25%, which is similar to the results from the Big Data Observatory Platform for Stroke of China as compared with the same period in 2019. Many factors contributed to the reduced admissions and prehospital delays; lack of stroke knowledge and proper transportation were significant limiting factors. Patients not coming to the hospital for fear of virus infection was also a likely key factor. Conclusions: The COVID-19 outbreak impacted stroke care significantly in China, including prehospital and in-hospital care, resulting in a significant drop in admissions, thrombolysis, and thrombectomy. Although many factors contributed, patients not coming to the hospital was probably the major limiting factor. Recommendations based on the data are provided.
COVID-19 becoming a pandemic as declared by the World Health Organization on March 11, 2020, the world needs to act quickly to have plans ready to deal with the challenges of continuing to deliver high-quality stroke care.
Sialyltransferases transfer sialic acid to nascent oligosaccharides and are upregulated in cancer. The inhibition of sialyltransferases is emerging as a potential strategy to prevent metastasis in several cancers, including ovarian cancer. ST3GAL1 is a sialyltransferase that catalyzes the transfer of sialic acid from cytidine monophosphate-sialic acid to galactose-containing substrates and is associated with cancer progression and chemoresistance. However, the function of ST3GAL1 in ovarian cancer is uncertain. Herein, we use qRT-PCR, western blotting, and immunohistochemistry to assess the expression of ST3GAL1 in ovarian cancer tissue and cell lines and investigate whether it influences resistance to paclitaxel in vitro and in a mouse xenograft model. We found that ST3GAL1 is upregulated in ovarian cancer tissues and in the ovarian cancer cell lines SKOV-3 and OVCAR3 but downregulated in A2780 ovarian cancer cells. Overexpression of ST3GAL1 in A2780 cells increases cell growth, migration, and invasion whereas ST3GAL1 knockdown in SKOV-3 cells decreases cell growth, migration, and invasion. Furthermore, overexpression of ST3GAL1 increases resistance to paclitaxel while downregulation of ST3GAL1 decreases resistance to paclitaxel in vitro, and overexpression of ST3GAL1 increases tumorigenicity and resistance to paclitaxel in vivo. Transforming growth factor-β1 can increase ST3GAL1 expression and induce ovarian cell epithelial–mesenchymal transition (EMT). However, knockdown of ST3GAL1 inhibits EMT expression. Taken together, our findings have identified a regulatory mechanism involving ST3GAL1 in ovarian cancer. ST3GAL1 may be a promising target for overcoming paclitaxel resistance in ovarian carcinoma.
Age at first sexual intercourse (AFS) and age at first birth (AFB) have implications for health and evolutionary fitness. In this genome-wide association study (AFS, N=387,338; AFB, N=542,901), we identify 371 SNPs, 11 sex-specific, with a 5-6% polygenic score (PGS) prediction. Heritability of AFB shifted from 9% [CI=4-14] for women born in 1940 to 22% [CI=19-25] in 1965. Signals are driven by the genetics of reproductive biology and externalising behaviour, with key genes related to follicle stimulating hormone (FSHB), implantation (ESR1), infertility, and spermatid differentiation. Our findings suggest that Polycystic Ovarian Syndrome may lead to later AFB, linking with infertility. Late AFB is associated with parental longevity, and reduced incidence of Type 2 Diabetes (T2D) and Cardiovascular disease (CAD). Higher childhood socioeconomic circumstances and those in the highest PGS decile (90%+) experience markedly later reproductive onset. Results are relevant for improving teenage and late-life health, for understanding longevity, and guiding experimentation into mechanisms of infertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.