Cellular senescence is a complex cell fate response that is thought to underlie several age-related pathologies. Despite a loss of proliferative potential, senescent cells are metabolically active and produce energy-consuming effectors, including senescence-associated secretory phenotypes (SASPs). Mitochondria play crucial roles in energy production and cellular signaling, but the key features of mitochondrial physiology and particularly of mitochondria-derived peptides (MDPs), remain underexplored in senescence responses. Here, we used primary human fibroblasts made senescent by replicative exhaustion, doxorubicin or hydrogen peroxide treatment, and examined the number of mitochondria and the levels of mitochondrial respiration, mitochondrial DNA methylation and the mitochondria-encoded peptides humanin, MOTS-c, SHLP2 and SHLP6. Senescent cells showed increased numbers of mitochondria and higher levels of mitochondrial respiration, variable changes in mitochondrial DNA methylation, and elevated levels of humanin and MOTS-c. Humanin and MOTS-c administration modestly increased mitochondrial respiration and selected components of the SASP in doxorubicin-induced senescent cells partially via JAK pathway. Targeting metabolism in senescence cells is an important strategy to reduce SASP production for eliminating the deleterious effects of senescence. These results provide insight into the role of MDPs in mitochondrial energetics and the production of SASP components by senescent cells.
Cancer stem cells (CSCs) have been found to play a decisive role in cancer recurrence, metastasis, and chemo-, radio-and immuno-resistance. Understanding the mechanism of CSC self-renewal and proliferation may help overcome the limitations of clinical treatment. The microenvironment of tumor growth consists of a lack of oxygen, and hypoxia has been confirmed to induce cancer cell invasion, metastasis and epithelial-mesenchymal transition, and is usually associated with poor prognosis and low survival rates. Hypoxia inducible factor-1 (HIF-1) can be stably expressed under hypoxia and act as an important molecule to regulate the development of CSCs, but the specific mechanism remains unclear. The present review attempted to explain the role of HIF-1 in the generation and maintenance of CSCs from the perspective of epigenetics, metabolic reprogramming, tumor immunity, CSC markers, non-coding RNA and signaling pathways associated with HIF-1, in order to provide novel targets with HIF-1 as the core for clinical treatment, and extend the life of patients. Contents 1. Introduction 2. Structural characteristics of HIF-1 3. Role of epigenetic and post-translational modification of HIF-1 in CSCs 4. Role of HIF-1 in non-coding RNA associated with CSCs 5. Role of HIF-1 in CSC markers 6. Role of HIF-1 in tumor immunity of CSCs 7. Role of HIF-1 in metabolic reprogramming of CSCs 8. Role of HIF-1 in signaling pathways associated with CSCs 9. Potential targets for CSC therapy 10. Conclusions and perspectives
Pluripotent stem cells have broad applications in regenerative medicine and offer ideal models for understanding the biological process of embryonic development and specific diseases. Studies suggest that the self-renewal and multi-lineage differentiation of stem cells are regulated by a complex network consisting of transcription factors, chromatin regulators, signaling factors, and non-coding RNAs. It is of great interest to identify RNA regulatory factors that determine the fate of stem cells. Long non-coding RNA (lncRNA), a class of non-coding RNAs with more than 200 bp in length, has been shown to act as essential epigenetic regulators of stem cell pluripotency and specific lineage commitment. In this review, we focus on recent research progress related to the function and epigenetic mechanisms of lncRNA in determining the fate of stem cells, particularly pluripotency maintenance and lineage-specific differentiation. We discuss the role of the Oct4 and Sox2 promoter-interacting lncRNA as identified by Chromatin RNA In Situ reverse Transcription sequencing (CRIST-seq). Further understanding of their potential actions will provide a basis for the development of regenerative medicine for clinical application. This work offers comprehensive details and better understanding of the role of lncRNA in determining the fate of stem cells and paves the way for clinical stem cell applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.