Precision motion systems are the core of a wide range of manufacturing equipment and scientific instruments, and their motion performance directly determines the quality and speed of the associated manufacturing or metrology processes. Magnetically levitated precision motion systems, where the moving target is supported by magnetic forces and without any mechanical contact, provide advantages of frictionless motion, vacuum compatibility, and contamination-free operation. These features endow the magnetic levitation technology with the capability to deliver excellent overall performance for precision positioning systems. Through decades of research and engineering efforts, significant advances have been made in the actuation, sensing, design, and control of magnetically levitated precision motion systems. This paper provides an introduction to the fundamentals of the feedback control, actuation, and sensing for the magnetic levitation technology, and provides a comprehensive literature review of various magnetically levitated precision positioning systems developed over the past three decades. The final part of this paper identifies several challenges in the design and control of today’s precision motion systems using magnetic levitation and provides an outlook on the possible directions for future research and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.