Building "disaster-resilient" rather than "disaster-resistant" cities/communities requires the development of response capabilities to natural disasters and subsequent recovery. This study devises a new method to measure resilience via recovery capability to validate indicators from social, economic, infrastructural, and environmental domains. The pollutant discharge data (waste-water and waste-gas discharge/emission data) of local power plants, sewage treatment plants and main factories were used to monitor recovery process of both people's living and local industrial production as the waste water/gas is released irregularly during the short disaster-hit period. A time series analysis of such data was employed to detect the disturbance on these infrastructures from disasters and to assess community recovery capability. A recent record-breaking flash flood in Changzhou, a city in eastern-central China, was selected as a case study. We used ordinal logistic regression to identify leading proxies of flood resilience. A combination of six variables related to socioeconomic factors, infrastructure development and the environment, stood out and explained 61.4% of the variance in measured recovery capability. These findings substantiate the possibility of using recovery measurement based on pollutant discharge to validate resilience metrics, and contribute more solid evidences for policy-makers and urban planners to make corresponding measures for resilience enhancement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.