The
integrity of the intestinal barrier is critical for homeostasis.
In this study, we investigated the protective effect of pterostilbene
(PTE) on the intestinal epithelium barrier. In vitro results of transepithelial electrical resistance (TEER) in Caco-2
cells indicated that PTE counteracted tumor necrosis factor α
(TNFα)-induced barrier damage. In vivo PTE
pretreatment markedly ameliorated intestinal barrier dysfunction induced
by dextran sulfate sodium (DSS). Notably, intestinal epithelial tight
junction (TJ) molecules were restored by PTE in mice exposed to DSS.
The mechanism study revealed that PTE prevented myosin light-chain
kinase (MLCK) from driving phosphorylation of MLC (p-MLC), which is
crucial for maintaining intestinal TJ stability. Furthermore, PTE
blunted translocation of NF-κB subunit p65 into the nucleus
to downregulate MLCK expression and then to safeguard TJs and barrier
integrity. These findings suggest that PTE protected the intestinal
epithelial barrier through the NF-κB- MLCK/p-MLC signal pathway.
Pulmonary fibrosis (PF) is a chronic lung disease. The transforming growth factor-β1 (TGF-β1)/Smad3 signaling pathway plays an important role in the pathogenesis of pulmonary fibrosis. Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown to be a modulator of the molecular aspects of the fibrosis pathway. However, it is still unknown as to whether the conditioned medium from BMSCs (BMSCs-CM) inhibits the epithelial-mesenchymal transition (EMT) process. This study confirmed the hypothesis that BMSCs-CM exerts an anti-fibrotic effect on human type II alveolar epithelial cells (A549) by suppressing the phosphorylation of Smad3. We used the A549 cells in vitro to detect morphological evidence of EMT by phase-contrast microscopy. These cells were randomly divided into 4 groups as follows: the control group, the TGF-β1 group, the SIS3 (specific inhibitor of Smad3) group and the BMSCs-CM group. The immunofluorescence method was used to determined the location of E-cadherin (E-calcium mucins; E-cad), α-smooth muscle actin (α-SMA) and p-Smad3. The expression levels of E-cad, CK8, α-SMA, vimentin, p-Smad3, Snail1, collagen I (COLI) and collagen III (COLIII) were detected by western blot analysis. Following exposure to TGF-β1, the A549 cells displayed a spindle-shaped fibroblast-like morphology. In accordance with these morphological changes, the expression levels of E-cad and CK8 were downregulated, while the expression levels of α-SMA and vimentin were upregulated. Along with this process, the expression levels of p-Smad3, Snail1, COLI and COLIII were increased. However, the cells in the BMSCs-CM group and SIS3 group exhibited a decrease in the levels of α-SMA and vimentin (which had been upregulated by TGF-β1), and an increase in the levels of E-cad and CK8 expression (which had been downregulated by TGF-β1). On the whole, these results indicated that BMSCs-CM suppressed the EMT which might be associated with TGF-β1/Smad3. This study provides the theoretical basis for the research of the mechanisms responsible for pulmonary disease.
The intestinal epithelium barrier functions to protect human bodies from damages such as harmful microorganisms, antigens, and toxins. In this study, we evaluated the protective effect and molecular mechanism of a dominant polymethoxyflavone nobiletin (NOB) from tangerine peels on intestinal epithelial integrity. The results from transepithelial electrical resistance (TEER) suggested that NOB pretreatment counteracts epithelial injury induced by inflammatory cytokines (TEER value in 48 h: vehicle, 135.6 ± 3.9 Ω/cm 2 ; TNF-α + IL-1β, 90.7 ± 0.5 Ω/cm 2 ; 10 μM NOB + TNF-α + IL-1β, 126.1 ± 0.8 Ω/cm 2 ; 100 μM NOB + TNFα + IL-1β, 125.3 ± 0.5 Ω/cm 2 . P < 0.001). Clinical and pathological test results suggested that administration of NOB effectively alleviates intestinal barrier injury induced by dextran sulfate sodium (DSS) as evidenced by the length of colon villi on day 7 (control, 253.7 ± 4.8 μm, DSS 131.6 ± 4.6 μm, NOB + DSS, 234.5 ± 5.1 μm. P < 0.001). Interestingly, when screening tight junction molecules for intestinal barrier integrity, we observed that independent treatment with NOB sharply increased claudin-7 levels (ratio of claudin-7 over GAPDH: control, 1.0 ± 0.06; DSS, 0.02 ± 0.001; NOB + DSS, 0.3 ± 0.07. P < 0.001), which was previously suppressed upon DSS stimulation. Furthermore, hepatocyte nuclear factor 4α (HNF-4α) transcriptional regulation of claudin-7 contributed to intestinal barrier homeostasis. Therefore, our study suggests potential intestinal protective strategies based on polymethoxyflavones of aged tangerine peels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.