Constructing a reliable and stable emotion recognition system is a critical but challenging issue for realizing an intelligent human-machine interaction. In this study, we contribute a novel channel-frequency convolutional neural network (CFCNN), combined with recurrence quantification analysis (RQA), for the robust recognition of electroencephalogram (EEG) signals collected from different emotion states. We employ movie clips as the stimuli to induce happiness, sadness, and fear emotions and simultaneously measure the corresponding EEG signals. Then the entropy measures, obtained from the RQA operation on EEG signals of different frequency bands, are fed into the novel CFCNN. The results indicate that our system can provide a high emotion recognition accuracy of 92.24% and a relatively excellent stability as well as a satisfactory Kappa value of 0.884, rendering our system particularly useful for the emotion recognition task. Meanwhile, we compare the performance of the entropy measures, extracted from each frequency band, in distinguishing the three emotion states. We mainly find that emotional features extracted from the gamma band present a considerably higher classification accuracy of 90.51% and a Kappa value of 0.858, proving the high relation between emotional process and gamma frequency band.
For the super AKNS system, an implicit symmetry constraint between the potentials and the eigenfunctions is proposed. After introducing some new variables to explicitly express potentials, the super AKNS system is decomposed into two compatible finite-dimensional super systems (x-part and t n -part). Furthermore, we show that the obtained super systems are integrable super Hamiltonian systems in supersymmetry manifold R 4N +2|2N +2 .
A new (1+1)-dimensional integrable system, i. e. the super coupled Korteweg-de Vries (cKdV) system, has been constructed by a super extension of the well-known (1+1)-dimensional cKdV system. For this new system, a novel symmetry constraint between the potential and eigenfunction can be obtained by means of the binary nonlinearization of its Lax pairs.The constraints for even variables are explicit and the constraints for odd variables are implicit. Under the symmetry constraint, the spacial part and the temporal parts of the equations associated with the Lax pairs for the super cKdV system can be decomposed into the super finite-dimensional integrable Hamiltonian systems on the supersymmetry manifold R 4N |2N +2 , whose integrals of motion are explicitly given.
The Tonga volcano erupted on 15 January 2022, at 04:15:45 UTC, which significantly influenced the atmosphere and space environment, at the same time, an unprecedented opportunity to monitor ionospheric anomalies is provided by its powerful eruption. In current studies of traveling ionospheric disturbance (TID) triggered by the 2022 Tonga volcanic eruption, the particular phenomenon of ionospheric disturbances in various parts of the world has not been reasonably explained, and the vertical ionospheric disturbances are still not effectively detected. In this paper, we calculate the high-precision slant total electron content (STEC) from more than 3000 ground-based GPS stations distributed around the world, then we obtain the radio occultation (RO) data from near-field COSMIC-2 profiles and investigate the horizontal TID and the vertical ionospheric disturbances by the singular spectrum analysis (SSA). Horizontal TID propagation captured by GPS STEC results indicates that acoustic-gravity waves dominate the energy input at the beginning of the ionospheric disturbance with an approximate speed of 1050 m/s initially. With the dissipation of the shock energy, lamb waves become a dominant mode of ionospheric disturbances, moving at a more stable speed of about 326 m/s to a range of 16,000 km beyond the far-field. Local characteristics are evident during the disturbance, such as the ionospheric conjugation in Australia and the rapid decay of TID in Europe. The shock-Lamb-tsunami waves’ multi-fluctuation coupling is recorded successively from the COSMIC-2 RO observation data. The shock and Lamb waves can perturb the whole ionospheric altitude. In contrast, the disturbance caused by tsunami waves is much smaller than that of acoustic-gravity waves and Lamb waves. In addition, influenced by the magnetic field, the propagation speed of TID induced by Lamb waves is higher towards the northern hemisphere than towards the southern hemisphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.