The gut-brain axis is a bidirectional information interaction system between the central nervous system (CNS) and the gastrointestinal tract, in which gut microbiota plays a key role. The gut microbiota forms a complex network with the enteric nervous system, the autonomic nervous system, and the neuroendocrine and neuroimmunity of the CNS, which is called the microbiota-gut-brain axis. Due to the close anatomical and functional interaction of the gut-liver axis, the microbiota-gut-liver-brain axis has attracted increased attention in recent years. The microbiota-gut-liver-brain axis mediates the occurrence and development of many diseases, and it offers a direction for the research of disease treatment. In this review, we mainly discuss the role of the gut microbiota in the irritable bowel syndrome, inflammatory bowel disease, functional dyspepsia, non-alcoholic fatty liver disease, alcoholic liver disease, cirrhosis and hepatic encephalopathy via the gut-liver-brain axis, and the focus is to clarify the potential mechanisms and treatment of digestive diseases based on the further understanding of the microbiota-gut- liver-brain axis.
Objective Regulation of single nucleotide polymorphisms (SNP) in micro-RNA (miRNA) on the host cells may be one of the most important factors influencing the occurrence of cervical cancer based on the prevalence of HPV infection and the development of cervical cancer. In order to explore the contribution of miRNA polymorphism to the occurrence and development of cervical cancer, we conducted an analytical study. Methods We selected the polymorphisms of three widely studied miRNAs (miRNA-146a rs2910164, miRNA-499 rs3746444, and miRNA-196a2 rs11614913). Then, we conducted a meta-analysis (for the first time) to investigate their susceptibility to cervical cancer. Case control studies on the correlation between these three miRNAs and cervical cancer susceptibility were investigated by searching on from Pubmed, The Cochrane Library, Embase, CBM, CNKI, Wanfang database, and VIP database. Basic characteristics were recorded and meta-analysis of the case studies was performed using the STATA 15.1 software. Results The miRNA-146a rs2910164 mutation significantly reduced the risk of cervical cancer in both recessive model (OR = 0.804, 95% CI = 0.652-0.992, P = 0.042; CC vs. CG+GG) and allelic model (OR = 0.845, 95% CI = 0.721-0.991, P = 0.038; C vs. G). There was no significant correlation between miRNA-499 rs3746444 and the risk of cervical cancer. The miRNA-196a2 rs11614913 mutation was significantly associated with a reduced risk of cervical cancer in homozygous model (OR = 0.641, 95% CI = 0.447-0.919, P = 0.016; TT vs. CC), dominant model (OR = 0.795, 95% CI = 0.636-0.994, P = 0.045; CT+TT vs. CC), recessive model (OR = 0.698, 95% CI = 0.532-0.917, P = 0.01; TT vs. CC+CT), and allelic models (OR = 0.783, 95% CI = 0.643-0.954, P = 0.015, T vs. C). Conclusion In summary, this meta-analysis shows that the mutant genotypes of miRNA-146a rs2910164 and miRNA-196a2 rs11614913 are associated with a reduced risk of cervical cancer. Therefore, they may be two gene regulatory points for the prevention of cervical cancer. Systematic review registration PROSPERO registration number CRD42021270079.
Objective: Regulation of single nucleotide polymorphisms (SNP) in micro-RNA (miRNA) on the host cells may be one of the most important factors influencing the occurrence of cervical cancer based on the prevalence of HPV infection and the development of cervical cancer. In order to explore the contribution of miRNA polymorphism to the occurrence and development of cervical cancer, we conducted an analytical study. Methods: We selected the polymorphisms of three widely studied miRNAs (miRNA-146a rs2910164, miRNA-499 rs3746444 and miRNA-196a2 rs11614913). Then we conducted a meta-analysis (for the first time) to investigate their susceptibility to cervical cancer. Case control studies on the correlation between these three miRNAs and cervical cancer susceptibility were investigated by searching on from Pubmed, The Cochrane Library, Embase, CBM, CNKI, Wanfang database and VIP database. Basic characteristics were recorded and meta-analysis of the case studies was performed using STATA 15.1 software. Results: The miRNA-146a rs2910164 mutation significantly reduced the risk of cervical cancer in both recessive model (OR= 0.804, 95%CI= 0.652-0.992, P= 0.042;CC vs. CG+GG) and allelic model (OR= 0.845, 95%CI= 0.721-0.991, P= 0.038;C vs. G). There was no significant correlation between miRNA -499 rs3746444 and the risk of cervical cancer. The miRNA -196a2 rs11614913 mutation was significantly associated with a reduced risk of cervical cancer in homozygous model (OR= 0.641, 95%CI= 0.447-0.919, P= 0.016;TT vs. CC), dominant model (OR= 0.795, 95%CI= 0.636-0.994, P= 0.045;CT+TT vs. CC), recessive model (OR= 0.698, 95%CI= 0.532-0.917, P= 0.01;TT vs. CC+CT), and allelic models (OR= 0.783, 95%CI= 0.643-0.954, P= 0.015;T vs. C). Conclusion: In summary, this meta-analysis shows that the mutant genotypes of miRNA -146a rs2910164 and miRNA -196a2 rs11614913 are associated with a reduced risk of cervical cancer. Therefore, they may be two gene regulatory points for the prevention of cervical cancer.PROSPERO Registration number: CRD42021270079.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.