We first present chemical-vapor-deposited GeBiTe (CVD GBT) in a confined cell for high-performance phase-change random access memory (PRAM). Due to the fast crystallization of GBT, we were able to reduce the speed to less than 26 ns while maintaining endurance characteristics up to 10 9 cycles. Our results indicate that the scalable PRAM device enabling the use of PRAM in dynamic RAM and storage class memory applications can be realized using CVD GBT.
Variational quantum algorithms, a representative class of modern quantum algorithms, provide practical uses of near-term quantum processors. The size of the problem that can be encoded and solved on a quantum processor is limited by the dimension of the Hilbert space associated with the processor. One common approach for increasing the system dimension is to utilize a larger number of quantum systems. Here, we adopt an alternative approach to utilize multiple degrees of freedom of individual quantum systems to experimentally resource-efficiently increase the Hilbert space. We report experimental implementation of the variational quantum eigensolver (VQE) using four-dimensional photonic quantum states of single photons. The four-dimensional quantum states are implemented by utilizing polarization and path degrees of freedom of a single photon. Our photonic VQE is equipped with a quantum error mitigation protocol that efficiently reduces the effects of Pauli noise in the quantum processing unit. We apply our photonic VQE to estimate the ground state energy of the
H
e
−
H
+
cation. Simulation and experimental results demonstrate that our experimental resource-efficient photonic VQE can accurately estimate the bond dissociation curve, even in the presence of large noise in the quantum processing unit. We also discuss further possible resource-efficient enhancement of the Hilbert space in photonic quantum processors. Our results propose that photonic systems utilizing multiple degrees of freedom can provide a resource-efficient avenue to implement practical near-term quantum processors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.